

DOI: 10.51981/2588-0039.2023.46.040

# ВОЗБУЖДЕНИЕ СИНГЛЕТНЫХ СОСТОЯНИЙ МОЛЕКУЛЯРНОГО КИСЛОРОДА НА ВЫСОТАХ МЕЗОСФЕРЫ И НИЖНЕЙ ТЕРМОСФЕРЫ ЗЕМЛИ В НОЧНЫЕ И СУМЕРЕЧНЫЕ ЧАСЫ

Ю.Н. Куликов, А.С. Кириллов

Полярный геофизический институт, Апатиты, Мурманская область

# Абстракт

Выполнены расчёты скоростей возбуждения и столкновительных процессов деактивации состояний  $O_2(b^1\Sigma_g^+,$ v) и O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>, v) молекулярного кислорода в высокоширотной мезосфере и нижней термосфере Земли в сумеречные и ночные часы в период равноденствия. Для расчётов высотных профилей концентрации атомарного и невозбуждённого молекулярного кислорода O2(X32g<sup>-</sup>), а также других химически активных составляющих (О3, ОН и др.), необходимых для расчётов уровней населённости возбуждённых синглетных состояний O<sub>2</sub>\* в области мезосферы и нижней термосферы, применялась разработанная ранее аэрономическая модель суточных вариаций химического состава верхней атмосферы. Модель включает в себя детальные расчёты скоростей фотодиссоциации компонентов атмосферы солнечным УФ-излучением с учётом их суточных вариаций, зависимости от солнечной активности, зенитного угла и географической широты, а также турбулентного и диффузионного массопереноса. Для проверки построенной модели использованы опубликованные экспериментальные данные о высотном распределении оптических и ИК-эмиссий верхней атмосферы, а также ряда других измерений. Сравнение рассчитанных населённостей  $O_2(b^{1}\Sigma_g^{+}, \nu)$  на высотах 80-110 км с результатами экспериментальных оценок для ночной Атмосферной эмиссии О2 даёт хорошее согласие. Также сравнение результатов расчётов сумеречной Атмосферной ИК-эмиссии в полосе  $O_2(a^1\Delta_e)$  с данными измерений показывает хорошее согласие модели и экспериментальных данных при определённом выборе входных параметров модели.

### Введение

Свечение полос Атмосферной (Atm) и Инфракрасной Атмосферной (IR-Atm) систем молекулярного кислорода в спектре верхней и средней атмосферы в ночные и сумеречные часы происходит в результате спонтанных излучательных переходов с электронно-возбуждённых состояний  $b^1\Sigma_g^+$  и  $a^1\Delta_g$  молекулы  $O_2$  на основное состояние  $X^3\Sigma_g^-$  (рис.1):

$$O_2(b^1\Sigma_g^+, \nu) \to O_2(X^3\Sigma_g^-, \nu') + h\nu_{Atm} , \qquad (1)$$

$$O_2(a^1\Delta_g, \nu) \to O_2(X^3\Sigma_g, \nu') + h\nu_{\text{IRAtm}} .$$
<sup>(2)</sup>

Наиболее интенсивной из Атмосферной системы является полоса 762 нм, обусловленная переходом (1) с v=0→v'=0. У Инфракрасной Атмосферной системы, аналогично, наиболее интенсивной является полоса 1.27 мкм, которая связана с переходом (2) v=0→v'=0.

Исследованию высотных профилей свечения указанных эмиссий и механизмов образования электронновозбужденного синглетного молекулярного кислорода в спокойной и авроральной ионосфере посвящено большое число экспериментальных и теоретических работ (*Cartwright et al.*, 1972; *Gattinger and Vallance Jones*, 1973; *Deans et al.*, 1976; *Feldman*, 1978; *McDade et al.*, 1985; *Gattinger et al.*, 1996; *Llewellyn et al.*, 1999; *Jones et al.*, 2006; *Kirillov*, 2014; *Slanger et al.*, 2017; *Kirillov and Belakhovsky*, 2021; *Куликов*, 2021).

Излучения Инфракрасных Атмосферных и Атмосферных молекулярных полос  $O_2^*$  являются важными компонентами дневного свечения мезосферы и нижней термосферы Земли. В работах (*Mlynczak et al.*, 1993, 2001, 2007; *Yankovsky et al.*, 2016, 2019) представлены радиационные и кинетические модели для расчета дневных концентраций синглетного молекулярного кислорода на высотах мезосферы и нижней термосферы. Авторы указанных работ продемонстрировали, что на более низких высотах синглетный кислород  $O_2(a^1\Delta_g)$  образуется преимущественно за счет фотолиза озона в полосе Хартли. Используя экспериментальные данные измерений дневного свечения синглетного кислорода, они получили значения концентраций озона и атомарного кислорода в мезосфере и нижней термосфере.

Авторы работы (*Slanger et al.*, 2017) в результате серии многолетних лабораторных исследований получили сильно различающиеся скорости гашения в неупругих столкновениях для двух самых низких колебательных уровней  $O_2(b^1\Sigma_{g^+}, v'=0, 1)$ . Их анализ данных наблюдений с борта KA Space Shuttle подтвердил, что в результате передачи энергии в реакции  $O(^1D) + O_2$  доминирующим продуктом является состояние b(1), а не b(0). При этом в состоянии b(1) образуется около 80% конечного продукта. Кроме того, только состояние b(1)

эффективно гасится в столкновениях с атмосферными составляющими и результатом столкновений, как с O(<sup>3</sup>P), так и с O<sub>2</sub>, является состояние b(0). В термосфере отношение концентраций [O(<sup>3</sup>P)]/[O<sub>2</sub>] быстро возрастает с высотой и доля гашения b(1) благодаря O(<sup>3</sup>P) также возрастает.

Ввиду этого, мониторинг из космоса дневных эмиссий Атмосферных полос (1-1) и (0-0) состояния O<sub>2</sub>(b<sup>1</sup>-X) авторы работы (*Slanger et al.*, 2017) предложили использовать, как метод дистанционного зондирования концентраций [O] и [O<sub>2</sub>] кислорода и температуры термосферы на высотах наблюдения.

Целью настоящей работы является дальнейшее исследование физико-химических процессов формирования высотных распределений возбуждённых состояний  $a^1\Delta_g$  и  $b^1\Sigma_g^+$  молекулярного кислорода (синглетного кислорода) с использованием аэрономической модели состава верхней атмосферы и совершенствование модели расчёта интенсивности ночных и сумеречных атмосферных эмиссий в мезосфере и нижней термосфере Земли. Особое внимание уделяется расчёту констант скоростей взаимодействия синглетного кислорода с атмосферными составляющими.

$$\begin{array}{c} \mathsf{E} \left( 10^{3} \, \mathsf{CM}^{-1} \right) \\ \begin{array}{c} 20 \\ \\ 16 \\ \\ \\ - \end{array} \\ \begin{array}{c} - \end{array} \\ 12 \\ \\ - \end{array} \\ \begin{array}{c} - \end{array} \\ 10 \\ \\ 10 \\ \\ - \end{array} \\ \begin{array}{c} - \end{array} \\ 10 \\ \\ - \end{array} \\ \begin{array}{c} - \end{array} \\ 10 \\ \\ - \end{array} \\ \begin{array}{c} - \end{array} \\ 10 \\ - \end{array} \\ \begin{array}{c} - \end{array} \\ 10 \\ - \end{array} \\ \begin{array}{c} - \end{array} \\ \begin{array}{c} - \end{array} \\ 10 \\ - \end{array} \\ \begin{array}{c} - \end{array} \\ \begin{array}{c} - \end{array} \\ 10 \\ - \end{array} \\ \begin{array}{c} - \end{array} \\ \begin{array}{c} - \end{array} \\ 10 \\ - \end{array} \\ \begin{array}{c} - \end{array} \\ \begin{array}{c} - \end{array} \\ \begin{array}{c} - \end{array} \\ 0 \\ - \end{array} \\ \begin{array}{c} - \end{array} \\ \end{array} \\ \begin{array}{c} - \end{array} \\ \begin{array}{c} - \end{array} \\ \begin{array}{c} - \end{array} \\ \end{array} \\ \begin{array}{c} - \end{array} \\ \begin{array}{c} - \end{array} \\ \end{array} \\ \begin{array}{c} - \end{array} \\ \begin{array}{c} - \end{array} \\ \end{array} \\ \begin{array}{c} - \end{array} \\ \end{array} \\ \begin{array}{c} - \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} - \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} - \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}$$
 \\ \end{array} \\

Рисунок 1. Схема колебательных уровней  $X^3\Sigma_g^-$ ,  $a^1\Delta_g$ ,  $b^1\Sigma_g^+$  состояний молекулы кислорода.

# Константы взаимодействия $O_2(b^1\Sigma_{g^+}, v)$ и $O_2(a^1\Delta_g, v)$ с молекулами $O_2$ и $N_2$

Расчёты констант взаимодействия синглетного кислорода  $O_2(b^1\Sigma_g^+, v>0)$  и  $O_2(a^1\Delta_g, v>0)$  с молекулами  $O_2$  был проведен в работах (*Kirillov*, 2012, 2013). Схема колебательных уровней  $X^3\Sigma_g^-$ ,  $a^1\Delta_g$ ,  $b^1\Sigma_g^+$  состояний молекулы кислорода представлена на рис.1. В данных работах было показано, что доминирующим каналом гашения является перенос энергии электронного возбуждения на молекулу-мишень с сохранением энергии колебаний у изначально возбужденной молекулы:

$$O_{2}(b^{1}\Sigma_{g}^{+}, v) + O_{2}(X^{3}\Sigma_{g}^{-}, v^{*}=0) \to O_{2}(X^{3}\Sigma_{g}^{-}, v^{"}) + O_{2}(a^{1}\Delta_{g}, b^{1}\Sigma_{g}^{+}, v^{'}),$$
(3)

$$O_{2}(a^{1}\Delta_{g},v) + O_{2}(X^{3}\Sigma_{g}^{-},v^{*}=0) \to O_{2}(X^{3}\Sigma_{g}^{-},v'') + O_{2}(a^{1}\Delta_{g},v').$$
(4)



**Рисунок 2.** Рассчитанные константы (сплошные линии) для *v*=1-15 процесса (3) сравниваются с экспериментальными данными (*Bloemick et al.*, 1998) (квадраты), (*Kalogerakis et al.*, 2002) (крестики), (*Slanger and Copeland*, 2003) (круги).

На рис.2 и рис.3 приведены результаты расчетов в работах (*Kirillov*, 2012, 2013) для уровней v=1-15 состояния  $b^{1}\Sigma_{g}^{+}$  и v=1-20 состояния  $a^{1}\Delta_{g}$ . Проведено сравнение с результатами имеющихся экспериментальных изменений и получено хорошее согласие. Для столкновений  $O_{2}(b^{1}\Sigma_{g}^{+}, v$ =0-15) с молекулами азота  $N_{2}$  расчеты

проведены в (*Kirillov*, 2013), давшие хорошее согласие с экспериментальными данными для v=0  $k=2\times10^{-15}$  см<sup>3</sup>с<sup>-1</sup>. Для столкновений O<sub>2</sub>( $a^{1}\Delta_{g}$ , v) +N<sub>2</sub> используем данные, имеющиеся в научной литературе.



**Рисунок 3.** Рассчитанные константы (сплошные линии) для *v*=1-20 процесса (4) сравниваются с экспериментальными данными (*Hwang et al.*, 1998) (квадраты), (*Slanger and Copeland*, 2003) (круги).

## Расчёт относительных населённостей $O_2(b^1\Sigma_g^+, \nu)$ на высотах 80-110 км

На основании приведённых на рис.2 констант взаимодействия рассчитаны относительные населённости  $O_2(b^1\Sigma_g^+, v=1-15)$  на высотах 80-110 км с учётом гашения электронного возбуждения при спонтанных излучательных процессах и неупругих столкновениях с составляющими  $O_2$ ,  $N_2$ , O. При этом для констант взаимодействия с молекулами азота использовались результаты работы (*Kirillov*, 2013), для константы взаимодействия с атомарным кислородом использовалось значение  $k_0=8\times10^{-14}$  см<sup>3</sup>с<sup>-1</sup> – согласно (Шефов и dp., 2006).

Проведено сравнение рассчитанных населённостей с результатами экспериментальных оценок (*Slanger et al.*, 2000) для v=1-15, выполненных с помощью телескопа Keck I (рис.4). Сравнение результатов расчётов наглядно демонстрирует, что бимодальное поведение измеренных интенсивностей свечения полос Атмосферной системы, полученное в (*Slanger et al.*, 2000), объясняется особенностями гашения состояний  $O_2(b^1\Sigma_g^+, v=1-15)$  невозбуждёнными молекулами кислорода.



**Рисунок 4.** Сравнение рассчитанных населённостей  $O_2(b^1\Sigma_g^+, v=1-15)$  с результатами экспериментальных оценок (*Slanger et al.*, 2000).

#### Результаты расчётов сумеречной эмиссии в полосе 1.27 мкм О2

В работе (*Куликов*, 2021) построена аэрономическая модель суточных вариаций химического состава верхней атмосферы Земли, основанная на численном решении системы нестационарных, пространственноодномерных уравнений неразрывности для высотных распределений концентраций O, O<sub>3</sub>, H, OH, и HO<sub>2</sub>, а также возбуждённых составляющих O(<sup>1</sup>D) и O<sub>2</sub>(a<sup>1</sup> $\Delta_g$ ), дополненных уравнениями молекулярной и турбулентной диффузии компонентов. В модели учтена фотодиссоциация солнечным излучением молекулярных компонентов O<sub>2</sub>, O<sub>3</sub>, H<sub>2</sub>O и HO<sub>2</sub> с образованием электронно-возбуждённых продуктов O(<sup>1</sup>D) и O<sub>2</sub>(<sup>1</sup> $\Delta_g$ ) и учтены последующие химические реакции между продуктами фотолиза.

В расчётах скоростей фотопроцессов использованы измерения потоков солнечной УФ-радиации из (Mount and Rottman, 1983) и сечения фотодиссоциации O<sub>2</sub> и O<sub>3</sub> из (Nicolet and Kennes, 1988), а также константы скоростей химических реакций и вертикальное распределение коэффициента турбулентной диффузии в области турбопаузы в (Garcia and Solomon, 1985; Гордиец и Куликов, 1981, 1982; Kulikov, 1996). С помощью

#### Ю.Н. Куликов и А.С. Кириллов

этой модели выполнены расчёты сумеречной вариации зенитной интенсивности эмиссии в полосе 1.27 мкм  $O_2$  для условий ракетного эксперимента (*Llewellyn and Witt*, 1977) по измерению яркости этой эмиссии, проведённого 13.03 1975 г. на заходе Солнца в северной Скандинавии (Кируна, Швеция, 68°N). Солнечный зенитный угол  $\chi$  во время измерений составлял 94.1°. Расчёты показали, что в дневное время возбуждение  $O_2({}^{1}\Delta_g)$  происходит в основном за счёт поглощения солнечного излучения в континууме Hartley  $O_3$ . На закате Солнца при увеличении  $\chi$  свыше 90° происходит быстрый рост высоты сумеречной тени и, соответственно, быстрое снижение на порядки величины скорости фотодиссоциации озона в континууме Hartley. Вследствие этого концентрация возбуждённых молекул синглетного кислорода в надвигающейся ночной области мезосферы начинает быстро убывать.



**Рисунок 5.** Рассчитанные высотные профили концентрации  $O_2(a^1\Delta_g)$  в период до и после захода Солнца для условий эксперимента (*Llewellyn and Witt*, 1977).

На рис.5 приведены высотные профили концентрации  $O_2({}^{1}\Delta_g)$  в период захода Солнца, рассчитанные для условий эксперимента (*Llewellyn and Witt*, 1977) при значениях времени t=18:00, 18:33, 19:00 и 20:00 ч. LST, для которых солнечный зенитный угол составлял 90°, 94.1°, 97.4° и 104.5°, соответственно.



**Рисунок 6.** Сравнение модельной и измеренной в эксперименте (*Llewellyn and Witt*, 1977) интенсивности сумеречной эмиссии в полосе 1.27 мкм  $O_2(a^1\Delta_g)$ .

Видно, что наиболее быстрое снижение концентрации  $O_2(a^1\Delta_g)$  происходит в нижней части рассматриваемого диапазона высот. Имевший место при  $\chi=90^\circ$  основной максимум концентрации  $O_2(^1\Delta_g)$  на уровне 56 км, через 1 час после начала заката Солнца, т.е. в 19:00, поднимается до высоты 67 км и становится меньше по величине вторичного максимума концентрации молекул  $O_2(a^1\Delta_g)$  на высоте около 85 км. Ещё через 1 час, т.е. в 20:00, нижний максимум концентрации  $O_2(a^1\Delta_g)$  практически полностью исчезает и свечение в полосе 1.27 мкм формируется главным образом на высотах 80-97 км.

Высотный профиль зенитной интенсивности эмиссии O<sub>2</sub>, рассчитанный для условий измерений с борта самолёта (*Llewellyn and Witt*, 1977) в вечерних сумерках при значении солнечного зенитного угла,  $\chi$ =94.1° на широте 68°N в период весеннего равноденствия, представлен на рис.6. Расчёт выполнен для квантового выхода (эффективности образования) молекул O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>) в реакции O<sub>3</sub> + hv→ O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>) + O(<sup>1</sup>D), составляющего 80%. Видно, что в этом случае в целом имеется удовлетворительное согласие между теорией и экспериментом. Данный результат вместе с тем указывает, что оценки эффективности основных процессов возбуждения молекул O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>) в верхней атмосфере, полученные ранее из анализа результатов отдельных сумеречных и ночных измерений (*McDade et al.*, 1987; *Lopez-Moreno et al.*, 1988; *Lopez-Gonzalez et al.*, 1989), существенно различаются между собой и нуждаются в критическом пересмотре с использованием всех опубликованных результатов измерения и расчётов интенсивности этой эмиссии.

#### Заключение

1. На основе ранее разработанной аэрономической модели химического состава, с учётом неравновесных химических реакций, а также процессов турбулентного и диффузионного массопереноса нейтральных компонентов в области мезосферы и нижней термосферы Земли (50-120 км), построена теоретическая модель процессов возбуждения и столкновительного гашения Атмосферной (762 нм) и ИК-атмосферной (1.27 мкм) эмиссий в колебательно-вращательных полосах синглетного молекулярного кислорода O<sub>2</sub>(b<sup>1</sup>, v) и O<sub>2</sub>(a<sup>1</sup>, v). Модель включает в себя детальные расчёты скоростей фотодиссоциации компонентов атмосферы солнечным УФ-излучением с учётом их суточных вариаций, зависимости от солнечной активности, зенитного угла и географической широты.

2. Для верификации построенной модели атмосферных эмиссий молекулярного синглетного кислорода использованы опубликованные экспериментальные данные о высотном распределении оптических и ИК-эмиссий верхней атмосферы, а также ряда других измерений. Сравнение результатов расчётов интенсивности сумеречной ИК-эмиссии O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>) с данными измерений показывает хорошее согласие модели и экспериментальных данных.

3. Представлены теоретически рассчитанные коэффициенты гашения возбуждённых состояний O<sub>2</sub><sup>\*</sup>. Результаты расчётов хорошо согласуются с экспериментальными данными. Данные константы использованы для определения колебательных населённостей электронно-возбуждённых уровней синглетного молекулярного кислорода в ночной и сумеречной атмосфере.

4. Выполнены расчёты относительных населённостей O<sub>2</sub>(b<sup>1</sup>Σ<sub>g</sub><sup>+</sup>, ν) на высотах 80-110 км. Сравнение рассчитанных населенностей с результатами имеющихся в научной литературе экспериментальных оценок, выполненных с помощью телескопа Keck I, для ночной атмосферной эмиссии O<sub>2</sub> дает хорошее согласие.

#### Литература

- Гордиец Б.Ф., Куликов Ю.Н. Влияние турбулентности и ИК-излучения на тепловой режим термосферы Земли. // Космич. исслед., 1981, т. 19, № 3, с. 539.
- Гордиец Б.Ф., Куликов Ю.Н. О роли турбулентности и инфракрасного излучения в тепловом балансе нижней термосферы. // В сб. «Инфракрасная спектроскопия и свойства среды в космосе» под ред. проф. М.М. Сущинского. // Труды ФИАН СССР им. П.Н. Лебедева, 1982, т. 130, с. 29, М., Изд. «Наука».
- Куликов Ю.Н. Исследования процессов возбуждения и релаксации электронно-возбуждённых состояний молекулярного кислорода в атмосферах Земли, Венеры и Марса на высотах свечения ночного неба. // Отчёт о НИР по гранту Мин. Науки РФ, 2021.
- Шефов Н.Н., Семенов А.И., Хомич В.Ю. Излучение верхней атмосферы индикатор ее структуры и динамики. М.: ГЕОС, 740 с., 2006.
- Bloemink H.I., Copeland R.A., Slanger T.G. Collisional removal of  $O_2(b^1\Sigma_g^+, v=1,2)$  by  $O_2$ ,  $N_2$ , and  $CO_2$ . // J. Chem. Phys., v. 109, No. 11, p. 4237-4245, 1998.

Cartwright D.C., Trajmar S., Williams W. The excitation of O2 in auroras. // Ann. Geophys., v. 28, p. 397-401, 1972.

- Deans A.J., Shepherd G.G., Evans W.F.J. A rocket measurement of the  $O_2(b^1\Sigma_g^+-X^3\Sigma_g^-)$  (0-0) atmospheric band in aurora. // J. Geophys. Res., v. 81, p. 6227-6232, 1976.
- Feldman P.D. Auroral excitation of optical emissions of atomic and molecular oxygen. // J. Geophys. Res., v. 83, p. 2511-2516, 1978.
- Garcia R, Solomon S. The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. // J. Geophys. Res., v. 90, p. 3850-3868, 1985.

- Gattinger R.L., Vallance Jones A. Observation and interpretation of O<sub>2</sub> 1.27-μ emission enhancements in aurora. // J. Geophys. Res., v. 78, p. 8305-8313, 1973.
- Gattinger R.L., Llewellyn E.J., Vallance Jones A. On I(5577 Å) and I(7620 Å) auroral emissions and atomic oxygen densities. // Ann. Geophys., v. 14, p. 687-698, 1996.
- Hwang E.S., Copeland R.A., Robertson R.M., Slanger T.G. // EOS Trans. AGU, v. 79, F85, 1998.
- Jones D.B., Campbell L., Bottema M.J., Teubner P.J.O., Cartwright D.C., Newell W.R., Brunger M.J. Electron-driven excitation of O<sub>2</sub> under night-time auroral conditions: Excited state densities and band emissions. // Planet. Space Sci., v. 54, p. 45-59, 2006.
- Kalogerakis K.S., Copeland R.A., Slanger T.G. Collisional removal of O<sub>2</sub>(b<sup>1</sup>Σ<sub>g</sub><sup>+</sup>, *v*=2,3). // J. Chem. Phys., v. 116, No. 12, p. 4877-4885, 2002.
- Kirillov A.S. Calculation of rate coefficients for the interaction of singlet and triplet vibrationally excited oxygen. // Quantum Electronics, v. 42, No. 7, p. 653-658, 2012.
- Kirillov A.S. The calculations of quenching rate coefficients of O<sub>2</sub>(b<sup>1</sup>Σ<sub>g</sub><sup>+</sup>, ν) in collisions with O<sub>2</sub>, N<sub>2</sub>, CO, CO<sub>2</sub> molecules. // Chem. Phys., v. 410, p. 103-108, 2013.
- Kirillov A.S. Singlet oxygen  $O_2(b^1\Sigma_g^+)$  production at altitudes of the polar ionosphere. // Geomagnetism and Aeronomy, v. 54, No. 4, p. 523-529, 2014.
- Kirillov A.S., Belakhovsky V.B. The kinetics of O<sub>2</sub> singlet electronic states in the upper and middle atmosphere during energetic electron precipitation. // J. Geophys. Res.: Atmosphere, v. 105, e2020JD033177, 2021.
- Kulikov Y.N. Estimates of the vertical eddy diffusivity inferred from rocket-borne measurements of the 9.6 mm band radiation of ozone in the polar night time upper atmosphere. // 23d European Meeting on Atmospheric Studies by Optical Methods, Kiev, Abstracts, p. 68, 1996.
- Llewellyn E.J., Witt G. The measurement of ozone concentrations at high latitude during the twilight. // Planet. Space Sci., v. 25, p. 165-172, 1977.
- Llewellyn E.J., Gattinger R.L., Vallance Jones A. On the variability of *I*(7620 Å)/ *I*(5577 Å) in low altitude aurora. // Ann. Geophys., v. 17, p. 913-918, 1999.
- Lopez-Gonzalez M.J., Lopez-Moreno J.J., Lopez-Valverde M.A., Rodrigo R. Behavior of the O<sub>2</sub> infrared atmospheric (0-0) band in the middle atmosphere during evening twilight and at night. // Planet. Space Sci., v. 37, No. 1, p. 61-72, 1989.
- Lopez-Moreno J.J., Rodrigo R., Moreno F., Lopez-Puertaz M., Molina A. Rocket measurements of O<sub>2</sub> Infrared Atmospheric System in the nightglow. // Planet. Space Sci., v. 36, No. 5, p. 459-467, 1988.
- McDade I.C., Llewellyn E.J., Harris F.R. A rocket measurement of the O<sub>2</sub>(b<sup>1</sup>Σ<sub>g</sub><sup>+</sup>-X<sup>3</sup>Σ<sub>g</sub><sup>-</sup>) (0-0) atmospheric band in a pulsating aurora. // Can. J. Phys., v. 63, p. 1322-1329, 1985.
- McDade I.C., Llewellyn E.J., Greer R.G., Murtagh D.P. ETON 6: A rocket measurement of the O<sub>2</sub> infrared atmospheric (0-0) band in the nightglow. // Planet. Space Sci., v. 35, p. 1541, 1987.
- Mlynczak M.G., Solomon S., Zaras D.S. An updated model for O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>) concentrations in the mesosphere and lower thermosphere and implications for remote sensing of ozone at 1.27 μm. // J. Geophys. Res.: Atmosphere, v. 98, p. 18639-18648, 1993.
- Mlynczak M.G, Morgan F., Yee J.-H., Espy P., Murtagh D., Marshall B., Schmidlin F. Simultaneous measurements of the  $O_2(^{1}\Delta)$  and  $O_2(^{1}\Sigma)$  airglows and ozone in the daytime mesosphere. // Geophys. Res. Lett., v. 28, p. 999-1002, 2001.
- Mlynczak M.G., Marshall B.T., Martin-Torres F.J., Russell J.M. III, Thompson R.E., Remsberg E.E., Gordley L.L. Sounding of the Atmosphere using Broadband Emission Radiometry observations of daytime mesospheric  $O_2(^{1}\Delta)$  1.27 µm emission and derivation of ozone, atomic oxygen, and solar and chemical energy deposition rates. // J. Geophys. Res.: Atmosphere, v. 112, D15306, 2007.
- Mount G.H., Rottman G.J. The solar absolute spectral irradiance 1150-3173 A: May 17, 1982. // J. Geophys. Res., v. 88, No. C9, p. 5403-5410, 1983.
- Nicolet M., Kennes R. Aeronomical problems of molecular oxygen photodissociation-IV. The various parameters for the Herzberg continuum. // Planet. Space Sci., v. 36, No. 10, p. 1069-1076, 1988.
- Slanger T.G., Cosby P.C., Huestis D.L., Osterbrock D.E. Vibrational level distribution of O<sub>2</sub>(b<sup>1</sup>Σ<sub>g</sub><sup>+</sup>, v=0-15) in the mesosphere and lower thermosphere region. // J. Geophys. Res., v. 105, No. D16, p. 20557-20564, 2000.
- Slanger T.G., Copeland R.A. Energetic oxygen in the upper atmosphere and the laboratory. // Chem. Rev., v. 103, No. 12, p. 4731-4765, 2003.
- Slanger T.G., Pejakovic D.A., Kostko O., Matsiev D., Kalogerakis K.S. Atmospheric dayglow diagnostics involving the O<sub>2</sub>(*b-X*) Atmospheric band emission: Global Oxygen and Temperature (GOAT) mapping. // J. Geophys. Res.: Space Phys., v. 122, p. 3640-3649, 2017.
- Yankovsky V.A., Martyshenko K.V., Manuilova R.O., Feofilov A.G. Oxygen dayglow emissions as proxies for atomic oxygen and ozone in the mesosphere and lower thermosphere. // J. Molec. Spec., v. 327, p. 209-231, 2016.
- Yankovsky V., Vorobeva E., Manuilova R. New techniques for retrieving the [O(<sup>3</sup>P)], [O<sub>3</sub>] and [CO<sub>2</sub>] altitude profiles from dayglow oxygen emissions: Uncertainty analysis by the Monte Carlo method. // Adv. Space Res., v. 64, p. 1948-1967, 2019.