

Polar Geophysical Institute

DOI: 10.51981/2588-0039.2022.45.020

СОПОСТАВЛЕНИЕ НИЗКОЧАСТОТНЫХ ХАРАКТЕРИСТИК МОДЕЛЬНОГО СПИРАЛЬНОГО МАГНИТНОГО ОБЛАКА СОЛНЕЧНОГО ВЕТРА С НАБЛЮДАЕМЫМИ ВОЗМУЩЕНИЯМИ

Н.А. Бархатов¹, Е.А. Ревунова², А.Е. Барсукова¹

¹Нижегородский государственный педагогический университет им. К. Минина ²Нижегородский государственный архитектурно-строительный университет

Аннотация

В работе представлены результаты сопоставления аналитического исследования особенностей радиального распределения МГД возмущений компонент магнитного поля в теле магнитного облака солнечного ветра с данными, зарегистрированными на КА. Аналитико-численное решение для возмущений выполнено в цилиндрической системе координат для модельного тела облака, представленного бессиловой цилиндрической трубкой со спиральным магнитным полем. Полученное общее представление о радиальном распределении компонент магнитного поля в теле МО согласуется с зарегистрированными параметрами возмущений магнитного поля на патрульном КА. Совместная постобработка результатов счета и сопоставляемых с ними реальных данных усиливает согласованность, что подтверждает адекватность примененного МГД подхода к анализу колебаний в модельном теле магнитного облака.

Введение

В настоящее время разработано несколько моделей для описания распределения магнитного поля в магнитных облаках. Наиболее распространенной является бессиловая модель, предложенная в работе [1]. Уравнения, описывающие распределение магнитного поля в бессиловой модели облака, получают исходя из уравнений Максвелла. Она предполагает, что токи в облаке параллельны (или антипараллельны) линиям магнитного поля, а перпендикулярная компонента тока отсутствует. Следовательно, ток просто пропорционален магнитному полю B и $J = \alpha B$, где, α - коэффициент пропорциональности. Окончательно, получается уравнение $\Delta^2 B = -\alpha^2 B$, которое описывает распределение магнитного поля в бессиловой модели магнитного поля в облака. Этот подход используют для различных симметрий конфигураций магнитного поля в облаке, например, цилиндрической [2] или тороидальной [3]. В цилиндрических координатах (R, φ , X), если ось облака направлена вдоль оси X, а решение соответствующего векторного уравнения дается функциями Бесселя нулевого и первого порядка первого рода:

$$B_{X} = B_{0}J_{0}(\alpha R), B_{\varphi} = B_{0}HJ_{1}(\alpha R), B_{R} = 0.$$

Здесь нижние индексы обозначают осевую, касательную и радиальную компоненты магнитного поля, соответственно. B_0 – значение магнитного поля на оси облака, R – радиус облака, H – спиральность (+1, -1), определяющая направление вращения поля в облаке. Таким образом, получаем, что в данном случае магнитное поле вращается вокруг оси облака по спирали. Коэффициент α можно вычислить, исследуя магнитное поле на границе облака. На границе осевая компонента магнитного поля должна обнуляться. Для функции Бесселя первого рода нулевого порядка, первый нуль имеет место при 2.4048 и поэтому, $B_x = 0 = B_0 J_0 (2.4048)$. Это дает 2.4048 = αR , где R – радиус облака. Поэтому, $\alpha = 2.4048/R$. Конфигурация магнитного поля в цилиндрическом облаке может быть полностью описана с помощью 6 параметров: значение магнитного поля на оси облака (Bo, нTл), его радиус (R, Re), полярный угол (ε , °) – угол наклона оси облака к плоскости эклиптики, азимутальный угол (β , °) – угол между проекцией оси на плоскость эклиптики и осью X в солнечно-эклиптической системе координат GSE (линией Солнце-Земля), прицельный параметр (b, Re) – расстояние от оси облака до оси X в GSE, спиральность (H).

Более точное приближение рассматриваемых моделей магнитного облака к описанию реального выброса вещества и особенностей его эволюции в межпланетном пространстве требует учета взаимодействия замагниченного облака плазмы с солнечным ветром. В результате взаимодействия структура модельного облака деформируется, отклоняясь от строго симметричной. Это обстоятельство учитывается при создании усложненных моделей. В работе [4] проведено сравнение различных моделей применяемых для получения параметров и конфигурации магнитных облаков. В них показано, что получаемые с помощью различных моделей результаты хорошо согласуются друг с другом и усложнение модели в действительности не приводит к существенным уточнениям основных параметров облаков – величина магнитного поля на оси облака, его радиус, прицельный параметр по отношению к Земле, ориентация оси к плоскости эклиптики. Поскольку именно эти характеристики облаков являются ключевыми с точки зрения их геоэффективности, то мы остановились на простейшей бессиловой цилиндрической модели. Работа посвящена аналитическому определению радиального распределения азимутальных и продольных возмущений компонент магнитного поля в теле коронального потока типа магнитного облака солнечного ветра. Найденные распределения далее сопоставляются с зарегистрированными параметрами возмущений магнитного поля на патрульном КА, пересекаемом телом магнитного облака. Инструментом для оценки качества выполненных аналитических расчетов выступает корреляционный анализ.

Магнитогидродинамический подход

Получим аналитические особенности радиального распределения МГД возмущений компонент магнитного поля в модельном теле магнитного облака солнечного ветра. Как было определено ранее, модельное тело облака будет представлено бессиловой цилиндрической трубкой со спиральным магнитным полем. Исследование возмущений проводилось в цилиндрической системе координат. Магнитогидродинамический подход дает возможность искать решение системы уравнения в виде радиальной зависимости малых гармонических азимутальных и продольных возмущений и перейти к уравнению второго порядка для смещения среды. В заключение аналитических расчетов получена система уравнений для радиальных зависимостей компонент возмущения магнитного поля в модельном облаке, которая решается численным методом [5].

Запишем исходную систему МГД уравнений в виде:

$$\rho \frac{d\mathbf{u}}{dt} = -\nabla p + \frac{1}{c} [\mathbf{j} \times \mathbf{B}], \ \frac{d\rho}{dt} + \rho \operatorname{div} \mathbf{u} = 0, \ \operatorname{rot} \mathbf{B} = \frac{4\pi}{c} \mathbf{j}, \ \operatorname{div} \mathbf{B} = 0, \ \operatorname{rot} \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

Модель спирального магнитного поля облака представляется выражениями для компонент магнитного поля в функциях Бесселя нулевого и первого порядка (*J*₀, *J*₁) для в цилиндрической системе координат:

 $rot \mathbf{B} = \alpha \mathbf{B}$, $B_r = 0$, $B_Z = B_0 J_0(\alpha r)$, $B_{\varphi} = B_0 J_1(\alpha r)$, где $\alpha = \frac{2,4}{a}$, a – радиус цилиндрического облака, коэффициент 2,4 является первым корнем функции Бесселя. Обозначим смещение среды через ξ ($\xi_r, \xi_{\varphi}, \xi_z$ – компоненты вектора смещения), тогда скорость $\mathbf{u} = \frac{\partial \xi}{\partial t}$. Примем, что среда магнитного облака удовлетворяет следующим условиям: $\nabla p = 0$, div $\mathbf{u} = 0$, div $\boldsymbol{\xi} = 0$, где p – давление. Считаем возмущения параметров среды и магнитного поля малыми ($\mathbf{b} \ll \mathbf{B}$). Линеаризация четвертого уравнения системы МГД уравнений дает связь

между возмущениями магнитного поля и смещения среды $\mathbf{b} = \text{rot}[\boldsymbol{\xi} \times \mathbf{B}]$. Тогда, согласно оставшимся МГД уравнения, уравнение для возмущения смещения будет иметь вид:

$$\frac{\partial^2 \boldsymbol{\xi}}{\partial t^2} = \frac{1}{4\pi\rho} \Big[\Big(\operatorname{rot} \left(\operatorname{rot} \big[\boldsymbol{\xi} \times \mathbf{B} \big] \right) \Big) \times \mathbf{B} \Big] + \frac{1}{4\pi\rho} \Big[\operatorname{rot} \mathbf{B} \times \operatorname{rot} \big[\boldsymbol{\xi} \times \mathbf{B} \big] \Big]$$

Поскольку вычисления проводятся в цилиндрической системе координат, то для малых гармонических возмущений следует принять: $b, \xi \sim exp(-i\omega t + im\varphi + ikz)$. Окончательно система уравнений для расчета смещений имеет следующий вид:

$$\begin{aligned} &-\frac{\omega^2}{V_A^2}\xi_r = \left(J_0B - J_1C\right) + \alpha J_1\left(\frac{\partial}{\partial r}\left(f\xi_r\right) + \frac{\xi_r f}{r}\right) - \alpha J_0\frac{\partial}{\partial r}\left(\xi_r J_1\right) + \left(J_1\frac{im}{r} - J_0ik\right)\frac{J_1\xi_\varphi}{r} + \alpha \left(q\left(J_1\xi_z - J_0\xi_\varphi\right) + \alpha J_0f\xi_r + \alpha J_1^2\xi_r\right); \\ &-\frac{\omega^2}{V_A^2}\xi_\varphi = -AJ_0 - \alpha J_0f\xi_r\left(1 + ik\right) - \alpha J_0J_1\frac{im}{r}\xi_r + \alpha J_0\xi_r q + \alpha\xi_\varphi\frac{J_0J_1}{r}; \\ &-\frac{\omega^2}{V_A^2}\xi_z = AJ_1 + \alpha J_1f\xi_r\left(1 + ik\right) + \alpha J_1^2\frac{im}{r}\xi_r - \alpha J_1\xi_r q - \alpha\xi_\varphi\frac{J_1^2}{r}; \\ &A = q\left(\frac{im}{r}\xi_z - ik\xi_\varphi\right); B = q\left(ik\xi_r - \frac{\partial\xi_z}{\partial r}\right) - q\xi_z; C = \frac{q}{r}\left(\xi_\varphi + r\frac{\partial\xi_\varphi}{\partial r} - im\xi_r\right) + \frac{\partial q}{\partial r}\xi_\varphi; q = \frac{im}{r}J_1 + ikJ_0; f = \frac{1}{2}(J_0 - J_2); \end{aligned}$$

Н.А. Бархатов и др.

Интересующее нас распределение возмущения магнитного поля определяется согласно уравнению $\frac{\partial \mathbf{B}}{\partial t} = rot(\mathbf{u} \times \mathbf{B})$ и записывается в виде $\mathbf{b} = rot[\boldsymbol{\xi} \times \mathbf{B}] = B_0 \left[q\boldsymbol{\xi} + \alpha \boldsymbol{\xi}_r \left(-f\boldsymbol{\varphi}_0 + J_1 \mathbf{z}_0 \right) + \frac{\boldsymbol{\xi}_{\varphi}}{r} J_1 \mathbf{r}_0 \right],$ где **B** – значение

фонового магнитного поля в конкретных точках внутри магнитного облака.

Решение полученной системы уравнений для радиального распределения компонент смещения на разных частотах как параметров продолжено итерационным алгоритмом Эйлера. В качестве граничного условия было выбрано отсутствие смещения на поверхности магнитной трубки ξ_r (r = a) = 0. Используя формулы Эйлера вычисляются параметры для следующей итерации и на каждой последующей итерации записываются значения найденных функций и их производных. Расчет прекращался при выполнении одного из условий: достигнуты предельное число итераций или граница расчетной области. Как показал численный счет, метод Эйлера продемонстрировал устойчивое решение системы уравнений для расчетной области согласующейся с областями реально наблюдаемых тел облаков.

Сопоставление низкочастотных характеристик модельного спирального магнитного облака солнечного ветра с наблюдаемыми возмущениями

Сопоставление рассчитанного радиального распределения компонент смещения магнитного поля в теле модельного облака с распределением компонент магнитного поля в теле зарегистрированного МО выполнялась для двух среднестатистических МО, зарегистрированных 22-01-2000 и 10-11-2004. Указаны начальные даты зарегистрированных событий. Из всего объема имеющихся данных в общедоступных каталогах по МО далеко не все удовлетворяют модельному представлению. Критериями отбора были: спиральность магнитного поля и минимальный наклон оси цилиндрического облака к плоскости эклиптики. Это означает, что тела магнитных облаков не всегда вписываются в выбранную идеализированную математическую модель. Найденные нами два МО близкие к идеальной модели мы считаем своей большой удачей. Указанные среднестатистические МО наиболее близки к идеальной математической модели. Данные возмущений взяты с минутным paspeшением с КА ACE с узла http://cdaweb.gsfc.nasa.gov. Особенностью рассматриваемых облаков является ориентация их потоковой магнитной трубки близкая к вертикальной в солнечно-эклиптической системе координат. Особенностью сопоставления является необходимость замены регистрируемой динамики, т.е. временной зависимости возмущений, регистрируемых при пересечении облаком космического аппарата, на пространственное распределение возмущений. Это можно делать для низкочастотных возмущений с периодами сопоставимыми со временем пересечения. Для анализируемых в исследовании событий МО, время пересечения тела облака космическим аппаратом, составляло приблизительно 10 часов, что и определяло характерные периоды исследуемых возмущений.

Предварительные оценки величин волнового числа k и номера моды m, которые являются независимыми переменными в решаемой системе МГД уравнений, а также сам процесс сопоставления вычисленных и наблюдаемых радиальных распределений установили физические ограничения на диапазон их значений. В численных экспериментах волновое число k для HЧ флуктуаций выбиралось исходя из диапазона периодов, сопоставимых со временем пересечения MO космическим аппаратом. При заданном k, номера подходящих мод m подбирались экспериментально таким образом, чтобы при сопоставлении пар азимутальных Вφ и продольных Bz компонент реальных (реал) и вычисленных (выч) возмущений магнитного поля отмечалась согласованность. Так, для MO 10-11-2004 оказалось, что m=11, для MO 22-01-2000 - m=68.

Необходимость исключения из рассмотрения незначащих высокочастотных колебаний для концентрации внимания на анализе НЧ флуктуаций компонент межпланетного магнитного поля, потребовала дополнительной обработки получаемых решений. Постобработка результатов счета и сопоставляемых с ними реальных данных выполнялась цифровым сглаживающим фильтром. Из них количественно по результатам корреляционного анализа выбирался наиболее удачный вариант описания связи соответствующих Во и Вz компонент. На рисунках 1 и 2 по оси ординат представлена условная амплитуда значений компонент поля, по оси абсцисс – радиальная развёртка в масштабах радиуса Земли по срезу цилиндрической потоковой трубки с осью симметрии в центре. На рис. 1 демонстрируются результаты счета и сопоставляемых с ними реальных данных для тела MO 22-01-2000 без дополнительной обработки. Получены следующие коэффициенты корреляции: R=0.43 между зарегистрированным Вф реал и вычисленным Вф выч; R=0.47 между зарегистрированным Вz реал и вычисленным Вz выч. На рис. 2 демонстрируется постобработка результатов счета и сопоставляемых с ними реальных данных для тела МО 10-11-2004 цифровым сглаживающим фильтром при анализе периода НЧ флуктуаций 600 минут. Получены следующие коэффициенты корреляции: R=0.44 между Вф реал и Вф выч; R=0.31 между Вz реал и Вz выч. Постобработка цифровым сглаживающим фильтром расчетных и реальных данных повысила корреляцию: R=0.51 между Вореал и Ворвыч; R=0.58 между Вг реал и Вг выч. Сопоставление показало, что аналитико-численное решение даёт общее представление о радиальном распределении возмущенных компонент магнитного поля в теле МО, согласующееся с реально зарегистрированной динамикой параметров МО на патрульном КА.

Сопоставление низкочастотных характеристик модельного спирального магнитного облака солнечного ветра...

Рисунок 1. Сопоставление результатов счета (красные кривые Вф выч, Вz выч) с реальными данными (синие кривые Вф реал, Bz реал) для тела 22-01-2000. а) - сопоставление (Вф реал, Вф выч, R=0.43), б) – сопоставление (Bz реал, Bz выч, R=0.47).

Рисунок 2. Сопоставление результатов счета с реальными данными для тела МО 10-11-2004 показано толстыми линиями. Постобработка цифровым сглаживающим фильтром расчетных и реальных данных представлена тонкими линиями. Красные кривые Вф выч, Вz выч, синие кривые Вф реал, Bz реал. а) сопоставление Вф реал и Вф выч дает R=0.31, после обработки сопоставление Вф реал и Вф выч дает R=0.51; б) сопоставление Bz реал, Bz выч дает R=0.44, после обработки сопоставление Bz реал и Bz выч дает R=0.58.

Обсуждение результатов

Как видно из представленных графиков, аналитико-численное решение даёт общее представление о радиальном распределении возмущенных компонент магнитного поля в теле МО для НЧ возмущений, согласующееся с реально зарегистрированной динамикой параметров МО на патрульном КА. Совместная постобработка результатов счета и сопоставляемых с ними реальных данных усиливает согласованность, что подтверждает примененный МГД подход к анализу колебаний в модельном теле магнитного облака. Предлагаемый в исследовании метод дополняет анализ низкочастотных характеристик параметров МО методами Фурье- и вейвлет-спектрального анализа.

Список литературы

- 1. Lundquist S. Magnetohydrostatic fields // Ark. Fys., 1950. № 2. P. 361.
- Vandas M., Fischer S., Dryer M., Smith Z., Detman T. Simulation of magnetic cloud propagation in the inner heliosphere in two-dimensions 1. A loop perpendicular to the ecliptic plane // J. Geophys. Res., 1995. V.100. № A7. P.12,285.
- 3. Vandas M., Odstrcil D., Watari S. Three-dimensional MHD simulation of a loop-like magnetic cloud in the solar wind // J. Gophys. Res., 2002. V.107. № A9. P.1236. doi:10.1029/2001JA005068
- 4. Hidalgo M.A., Nieves-Chinchilla T., Cid C. Elliptical cross-section model for the magnetic topology of magnetic clouds // Geophys. Res. Letters., 2002. V.29. №13. P.1637. doi:10.1029/2001GL013875
- 5. Михайловский А.Б. Неустойчивости плазмы в магнитных ловушках. М.: Атомиздат, 1978, 296 с.