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Abstract. The global features of the spatial-temporal distribution of high-latitude geomagnetic disturbances during 

the main phase of the first magnetic storm (20 April 2020) of the new, 25-th cycle of the solar activity have been 

studied. Basing on the ground based measurements by the global networks SuperMAG, INTERMAGNET and satellite 

data of AMPERE project (Active Magnetosphere and Planetary Electrodynamics Response Experiment), it was shown 

that the geomagnetic disturbances during this storm was significant (Kp = 5) despite the low speed of the magnetic 

cloud caused this storm. The intense (the peak intensity > -1000 nT) auroral substorm was observed in the storm main 

phase. The scenario of this substorm likes to the scenario of the supersubstorm (the peak intensity ~-2500 nT) in the 

main phase of the magnetic storm on 28 May 2011 when the conditions of the interplanetary magnetic field (IMF) 

were similar but the speed and dynamic pressure of the solar wind were slight higher. It was supposed that spatial 

development of the intense substorms during a storm main phase depends more on the appearance of large values of 

the southward IMF than on the speed and dynamic pressure of the solar wind and the global large-scale distribution 

is the common behavior of the intense substorm (SML-peak intensity~ -1000 nT) as well as of the supersubstorm 

(SML-peak intensity ~-2500 nT). 
 

Introduction 
The first magnetic storm in the beginning of the new 25-th solar activity cycle occurred on 20 April 2020. It was 

associated with a slow magnetic cloud (MC) approached the magnetosphere of the Earth. The detailed overview of 

the solar event caused this magnetic cloud and, as a result, the considered magnetic storm, was reported in [Davies et 

al., 2021; O’Kane et al., 2021]. Usually, geoeffectiveness of slow magnetic clouds (V < 400 km/s according to 

[Tsurutani et al., 2004]) is low, they do not cause intense storms [Richardson and Cane, 2012]. But in this case, MC 

was also characterized by significant amplitude of the southward IMF (the IMF Bz reached -15 nT). Apparently, this 

led to the development of a moderate magnetic storm with the peak SYM/H ~ -70 nT. 

There are lot of works studying intense magnetic storms caused by fast magnetic clouds, e.g., [Tsurutani et al., 1992; 

Kleimenova et al., 2021, and references therein]. But magnetic storms associated with slow magnetic clouds have not 

been studied enough, as well as their high-latitude geomagnetic effects. e.g., [Nitta et al., 2021]. In [Gromova et al., 

2022], it was shown that geoeffectiveness of the storm 20 April 2020 was rather high. It was discussed the geomagnetic 

disturbances in the morning-daytime sector of the polar latitudes (>70° MLAT) and some features of substorms during 

the initial and main phases of the magnetic storm. 

The aim of this paper is to study the global features of the spatio-temporal distribution of the intense substorm in the 

main phase of the storm on 20 April 2020 in the comparison with the scenario of the supersubstorm in the main phase 

of the magnetic storm on 28 May 2011 whose main phase occurred at approximately the same UT. 

 

Observations and discussion 
The variations of the IMF components By, Bz and the speed (V) and dynamic pressure (Psw) of the solar wind on 20 

April 2020 and 28 May 2011 are shown in Figure1a. The main phase of the storm on 20 April 2020 was developed 

after the sharp southward turn of the IMF Bz (to -15 nT) that does not changed for about 4 hours under the unstable 

IMF By. At the same time the dynamic pressure of the solar wind dropped to 2 nPa, the solar wind speed remained 

low, ~350-380 km/s. The IMF conditions in the main phase of the storm on 28 May 2011 were similar but the speed 

and dynamic pressure of the solar wind were slight higher (~500 km/s and~4 nPa respectively). 

The variation of the SML-index in Figure1b display the intense substorm in the main phase of the storm on 20 April 

2020 and the supersubstorm (SSS) during the main phase of the storm on 28 May 2011. As the peak intensity of the 

substorm as the supersubstorm one were observed under the significant negative IMF Bz and By and when some other 

parameters of the solar wind (V and Psw) were close. It made possible to compare development of the observed 

substorm and supersubstorm. The development of the supersubstorm in the main phase of the storm on 28 May 2011 

was studied in [Despirak et al., 2022]. 
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In Figure 2a, the spatio-temporal distribution of the intense substorm with comparison with the same of 

supersubstorm is demonstrated with AMPERE-maps constructed with registrations by the Iridium constellation of 66 

satellites at 780 km altitude, distributed over six orbit planes spaced equally in longitude. The AMPERE-maps of the 

ionospheric currents (auroral electrojets) show that they developed in a similar way during the substorm(left) and 

supersubstorm (right) peak intensity. The intense and extended westward electrojet is observed in the midnight, 

morning, and dayside sectors and the intense eastward electrojet was observed in the afternoon and evening sectors, 

as it is typically for supersubstorms. But the maps of the Field-Aliened Currents (FACs) distribution show their 

enhancement as well. Notes, in the both events, the daytime-morning FACs demonstrate the complex latitude layered 

structure that could be caused geomagnetic disturbances in the polar latitudes in the morning and dayside sectors. 

 
Figure 1. (a) Variation of the IMF By, Bz, the solar wind speed (V) and dynamic pressure (Psw), the global 

index of the geomagnetic activity SYM/H (1-min analog of Dst-index) on 20 April 2020 (left) and 28 May 

2011(right). The boundaries of SHEATH regions and the MCs according to the catalog of the large-scale solar 

wind phenomena are indicated by blue bars. Thin blue arrow points the peak intensity of the substorm and 

supersubstorm; (b) variation of SML-index in 05-14 UT of 20 April 2020 (left) and 28 May 2011 (right). Thick 

blue arrow points the peak intensity of the substorm and the supersubstorm. Here we used the SML-index 

constructed from SuperMAG data (included more than 100 stations in between 40° and 80° MLAT) as a proxy 

of a substorm intensity instead of AL-index. Data from https://omniweb.gsfc.nasa.gov/, 

http://iki.rssi.ru/pub/omni/catalog/, https://supermag.jhuapl.edu/. 

https://omniweb.gsfc.nasa.gov/
http://iki.rssi.ru/pub/omni/catalog/
https://supermag.jhuapl.edu/
https://supermag.jhuapl.edu/
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Figure 2. The peak intensity of the substorm (left) and supersubstorm (right). (a) AMPERE–derived maps of 

the spherical harmonic analysis of magnetic measurements, vectors of the magnetic field were rotated 90° 

clockwise to indicate ionospheric equivalent current direction, and FAC densities during the peak intensity of 

the substorm and supersubstorm; red and blue color shows the upward and downward currents respectively; 

(b) SuperDARN ionospheric convection maps along with DP2 contours at the same interval. Data from 

http://www.ampere/jhapl.edu; http://vt.superdarn.org/. 

http://www.ampere/jhapl.edu
http://vt.superdarn.org/
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The ionospheric currents presented as SuperDARN convection maps (see Figure2b) in the peak intensity of the 

substorm and supersubstorm could be considered as twin-vortices current system DP2 with two large-scale convection 

vortices. As it is reported in [Kumar et al., 2020] under southward Bz and when the IMF By is negative, the dusk cell 

(negative) is stronger than dawn cell (positive). In our case, it is seen that the dusk cell of convection was stronger on 

20 April 2020 than on 28 May 2011. 

 

Summary 

The first magnetic storm in the new solar activity cycle was caused by slow magnetic cloud, but large negative values 

of the IMF Bz led to the significant geomagnetic activity expressed in the development of geomagnetic disturbances 

in the morning-dayside sector of the polar latitudes in the initial phase of the storm and intense substorm in the main 

phase that comparable with the supersubstorm on 28 May 2011. 

It is shown that the intense substorm (SMLmin = -1340 nT) observed in the main phase of the magnetic storm on 20 

April 2020 developed globally. Its spatial-temporal distribution was similar the scenario of the supersubstorm on 28 

May 2011. 

We found that the global scale distribution is common behavior of the intense substorm (SML-peak intensity >  

-1000 nT) as well as of the supersubstorm (SML-peak intensity ~-2500 nT). 
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