

Polar Geophysical Institute

DOI: 10.25702/KSC.2588-0039.2018.41.34-37

СВЯЗЬ ПАРАМЕТРОВ СОЛНЕЧНОГО ВЕТРА РАЗНЫХ ТИПОВ С ИНДЕКСАМИ ГЕОМАГНИТНОЙ АКТИВНОСТИ В ПЕРИОД 1995-2016 гг.

Л.А. Дремухина¹, И.Г. Лодкина², Ю.И. Ермолаев²

¹Институт земного магнетизма, ионосферы и распространения радиоволн имени Н.В. Пушкова Российской академии наук (ИЗМИРАН), г. Москва, Россия

²Институт космических исследований Российской академии наук (ИКИ РАН), г. Москва, Россия e-mail: dremukh@izmiran.ru

Абстракт. В работе анализируются корреляционные связи между индексами геомагнитной активности *Кр*, ар и Dst* (Dst, скорректированный на вклад токов на магнитопаузе) и значениями функций связи, рассчитанными по данным о параметрах плазмы и магнитного поля в четырех типах солнечного ветра(CB): областях сжатия, образующихся в результате взаимодействия высокоскоростных потоков СВ из корональных дыр с медленными потоками из пояса стримеров (CIR); межпланетных проявлениях выбросов корональной массы (ICME), включающих магнитные облака (MC) и поршни (Ejecta); областях сжатия перед MC и Ejecta Для идентификации типов СВ за 1995-2016 гг. используются данные каталога (Sheath). ftp://ftp.iki.rssi.ru/pub/omni, в котором за рассматриваемый период, представлено 744 CIR-события, 118 МС, 501 Sheath и 843 Ejecta. Функции связи рассчитываются по данным базы OMNI, которая содержит также значения индексов Dst, Kp и ap. Проведенный анализ показал, что значения коэффициентов корреляции варьируются от 0.3 до 0.82. Самая высокие коэффициенты корреляции получены для индекса *ар*, в то время как самая слабая корреляционная связь получена для индекса Dst*. Геоэффективность функций связи для apиндекса, определенная по значениям коэффициентов линейной регрессии, имеет наибольшие значения для Sheath- и МС-событий. Соотношения эффективностей функций связи в разных типах СВ зависит от вида функции.

1. Введение

Несмотря на многочисленные данные космических экспериментов о параметрах околоземной плазмы, полученные за последние полвека, вопрос о воздействии солнечного ветра и межпланетного магнитного поля (ММП) на магнитосферно-ионосферную систему, передаче энергии из CB в магнитосферу и развитии возмущений геомагнитного поля в зависимости от параметров CB и ММП остается открытым. Геомагнитную возмущенность, или отклонение геомагнитного поля от его невозмущенного уровня, принято характеризовать значениями геомагнитных индексов. Наиболее часто используются индексы Kp (ap), AE и Dst (или Dst^* , в котором учтен вклад токов DCF), характеризующие степень возмущенности геомагнитного поля в зоне средних, авроральных и экваториальных широт, соответственно. Несмотря на то, что ap-индекс является производным от Kp, он преобразован в линейную шкалу, в отличие от квазилогарифмического Kp, и может использоваться для анализа самостоятельно.

Связь индексов геомагнитной активности с параметрами СВ и ММП исследовалась в многочисленных работах [1-5, и ссылки в них], в том числе и для периодов магнитных бурь, когда эффекты взаимодействия СВ с магнитосферой проявляются наиболее сильно. Было установлено, что одним из самых геоэффективных параметров СВ является его южная компонента ММП Bz < 0 и связанное с ней азимутальное электрическое поле $Ey = V \cdot Bz$, где V – радиальная скорость СВ [4]. Наряду с полем Ey было предложено множество функций связи (function-coupling FC), характеризующих отклик геомагнитной возмущенности на межпланетные условия. Эти функции представляют из себя различные комбинации параметров СВ, чаще всего выражения для электрического поля СВ, дополненные учетом часового угла и влиянием динамического давления плазмы СВ [2,3,5,6]. В [1] на основе анализа линейной зависимости между 20 различными FC и 13 индексами и магнитосферными параметрами, отражающими степень возмущенности магнитосферы, был сделан вывод, что наиболее эффективной является FC, описывающая скорость магнитного потока на магнитопаузе $d\Phi_{MI}/dt$.

В [2,3] показано, что геоэффективность СВ зависит от параметров плазмы в лобовой области между магнитослоем и магнитосферой, определяющих скорость пересоединения силовых линий магнитного поля на дневной стороне магнитосферы (*Rquick*).

В невозмущенном солнечном ветре ММП лежит в плоскости эклиптики и его *Bz*-компонента близка к 0. Вертикальная составляющая ММП появляется в нестационарных течениях СВ. Согласно [7] можно выделить четыре возмущенных геоэффективных типа СВ: магнитные облака МС и поршни (выбросы) Еjecta; области

взаимодействия разноскоростных потоков CIR и области сжатия плазмы Sheath перед быстрыми MC и Ejecta. Экспериментальные данные и выводы многих исследований [8-14] показали, что развитие магнитных бурь и суббуревой активности, инициированных CB разных типов, протекает по-разному. Однако результаты большинства из приведенных выше работ получены по данным, либо охватывающим небольшие интервалы времени, либо относящимся к периодам до 1995 г., когда данные о параметрах CB содержали большие пропуски. Подавляющее большинство работ, касающихся вопроса о различии в воздействии CB разных типов на магнитосферную возмущенность, проводилось для периодов главных фаз магнитных бурь. Однако магнитные бури являются достаточно редким событием, а прогноз геомагнитной обстановки на разных широтах требуется постоянно, в связи с чем представляется актуальным провести оценку связи между параметрами CB разных типов (в форме функций связи, описывающих различные физические модели такой взаимосвязи) и значениями индексов геомагнитной активности, опираясь на данные за период 1995-2016 гг., охватывающий полный 23-й и большую часть 24-го циклов солнечной активности (CA).

Рисунок 1. Распределение типов СВ по годам. Точечной линией показан ход чисел Вольфа.

2. Данные и методы

Для расчета функций связи были использованы данные о параметрах СВ и значения индексов *Dst, Kp* и *ap* с сайта *http://omniweb.gsfc.nasa.gov*. Каталог идентифицированных типов СВ представлен на сайте *ftp://ftp.iki.rssi.ru/pub/omni/*. За рассматриваемый период 1995-2016 гг. было идентифицировано 744 CIR-события, 118 MC, 501 Sheath и 843 Ејесtа. Частота появления всех 4-х типов СВ по годам на фоне распределения чисел Вольфа (т.е. уровня СА) представлена на рис. 1, из которого видно, что максимумы CIR-событий появляются в противофазе с уровнем СА, число Ејесtа возрастает на фазах спада и подъема СА, число Sheath следует за уровнем СА, а MC появляются независимо от фазы цикла СА.

Таблица 1.	Функциональный в	вид <i>FC</i> , их б	ризический смысл и	источники
	i jindino new i bii biii b	$m_{\mu} = c, \dots c$		

Функциональный вид	Физический смысл	Источник		
FC1 = VBz	электрическое поле Е	Burton et al., 1975 [4]		
FC2 = VBs	вариант Е	Burton et al., 1975 [4]		
$FC3 = VB_{\perp} \sin^2(\theta/2)$	вариант Е	Kan and Lee, 1979 [5]		
$FC4 = VB_{\perp} \sin 4(\theta/2)$	вариант Е	Wygant et al., 1983 [6]		
$FC5 = V^{4/3} B_{\perp}^{2/3} \sin^{8/3}(\theta/2)$	скорость магнитного потока на d $\Phi_{_{M\Pi}}/dt$	Newel et al., 2007 [1]		
$FC6 = p^{1/2} V^{4/3} B_{\perp}^{2/3} \sin^{8/3}(\theta/2)$	вариант dФ _{мП} /dt	Newel et al., 2007 [1]		
$FC7 = Rquick/(1.83*10^{-17})$	скорость пересоединения на дневной МП	Borovsky and Birn, 2014 [3]		
$FC8 = p^{1/2} V^{4/3} B_{\perp} \sin^{6}(\theta/2)$	вариант d $\Phi_{_{ m M\Pi}}/{ m dt}$	Temerin and Li, 2006 [15]		
FC9 = V + 56Bs	-	Borovsky, 2014 [2]		
$EC10 - VP^2 \sin^4(0/2) * Pl^2$	съ. – поток э-м энергии на магнитосферу	Perreault and Akasofu, 1978		
$\Gamma C I O = V D Sin (0/2)^{*} K I$	сра поток 5 м эпертии на магнитосферу	[16]		

В таблице 1 приведены вид функций. *FC*1-*FC*10 (их зависимость от параметров CB), физический смысл и источники. В ней *Bz*, *By* и *Bs* – вертикальная, азимутальная и южная составляющие ММП; $B_1 = (By^2 + Bz^2)^{1/2} - (By^2 + Bz^2)^{1/2}$

поперечная составляющая ММП ; θ =*arctan*(*By*/*Bz*) – часовой угол; *V* и *p* – скорость и динамическое давление CB; *Rquick* ~ *K* sin²(θ /2)*C*^{1/2}*n*^{1/2}*V*²(1+ β s)^{-3/4} равно оценке скорости пересоединения силовых линий магнитного поля вблизи дневной магнитопаузы, учитывающая такие параметры как плазменный β -параметр магнитослоя β s и степень сжатия головной ударной волны *C*, которые являются функциями альвеновского числа Маха М_A

Л.А. Дремухина и др.

[3] (множитель $K=0.4 \mu_0^{1/2} m_p^{1/2} = 1.8322 \cdot 10^{-17}$ в дальнейшем не учитывается, что не сказывается на результатах корреляции). Функция *FC*10 представляет из себя параметр Перрье-Акасофу, определяющий электромагнитную энергию CB, падающую на лобовую часть магнитопаузы (*R1*- расстояние до подсолнечной точки магнитосферы). Корреляционный анализ проводился без учета временного сдвига между наборами данных. В результате были получены коэффициенты корреляции и коэффициенты регрессии B_N^{Dst} , B_N^{ap} и B_N^{Kp} для линейных зависимостей: $Dst(i)=A_N^{Dst}+B_N^{Dst}FC_N(i)$; $ap(i)=A_N^{ap}+B_N^{ap}FC_N(i)$; $Kp(i)=A_N^{Kp}+B_N^{Kp}FC_N(i)$, где $C_N(i)$ – значения функций связи *FC*1-*FC*10 в *i*-й точке.

3. Результаты

На рис. 2 показаны полученные значения коэффициентов корреляции R между индексами Dst^* , Kp, ap и функциями FC1-FC10 в типах CB: CIR и Sheath (верхняя панель); MC и Ejecta (нижняя панель). Коэффициенты R в паре FC- Dst^* имеют невысокие (<0.6) значения для всех FC (за исключением FC9) для всех типов CB. В паре FC-ap коэффициенты R для всех типов CB имеют значения > 0.6 (за исключением FC1 и FC2), достигая значений ~(0.7-0.8) для MC- и Sheath-событий. Для CIR- и Ejecta-событий значения R в паре FC-ap варьируются от 0.4 до 0.65. В целом, наиболее тесная корреляционная связь получена для ap-индекса, самая слабая для Dst^* , и промежуточная – для Kp- индекса.

Рисунок 2. Коэффициенты корреляции R между функциями *FC*1-*FC*10 и индексами *Dst**, *Kp*, *ap* по данным за 1995-2016 гг. для 4-х типов CB: CIR и Sheath (*верхняя панель*) и MC и Ejecta (*нижняя панель*)

Геоэффективность (т.е., меру «отклика») каждой из FC можно оценить по значениям коэффициентов регрессии в ее линейной связи с индексами Dst*, Kp, ар, представленных в таблице 2. Изза разных размерностей функций FC сравнение их затруднительно, однако табл. 2 следует, что для ИЗ большинства FC наиболее сильный «отклик» (т.е. наиболее сильное изменение в индексе в ответ на единичное изменение FC) в Dst^* имеет место для MC- и Ejectaсобытий, в то время как для индекса наиболее высокая Kp геоэффективность обнаруживается для CIR- и Ејесtа-событий. Для пары FC-ар, для которой получены самые высокие коэффициенты корреляции (и, соответственно, статистически корреляционная связь) значимая наибольшие коэффициеты регрессии, т.е. наибольшая геоэффективность, характерна для типов солнечного ветра MC и Sheath.

Таблица 2. Коэффициенты регрессии в линейной связи между *FC* и индексами *-Dst**, *Kp* и *ap* для типов CB: CIR, Sheath, MC и Ejecta.

FC	CIR		Sheath		MC		Ejecta					
	-Dst*	Кр	ар	-Dst*	Кр	ар	-Dst*	Кр	ар	-Dst*	Кр	ар
$FC1/10^{3}$	3.98	2.86	4.26	3.81	1.79	4.99	3.77	2.27	5.34	4.88	3.66	3.99
$FC2/10^{3}$	8.45	6.10	9.68	8.43	4.10	11.28	9.59	4.91	12.35	12.66	8.93	10.31
$FC3/10^{3}$	8.83	6.55	9.72	8.11	4.27	10.96	9.69	4.89	12.18	12.17	8.78	9.76
FC4/10 ³	9.31	6.81	10.45	8.78	4.42	11.79	10.18	5.29	12.98	13.28	9.48	10.77
FC5/10 ³	2.53	1.92	2.74	2.74	1.51	3.66	3.28	1.68	4.07	3.44	2.54	2.71
$FC6/10^{3}$	1.17	0.92	1.41	0.73	0.42	1.15	1.09	0.56	1.58	2.14	1.63	1.88
$FC7/10^{4}$	0.18	0.14	0.20	0.19	0.11	0.27	0.26	0.14	0.33	0.28	0.21	0.22
$FC8/10^{3}$	0.55	0.39	0.69	0.25	0.12	0.39	0.45	0.21	0.64	1.13	0.79	1.01
$FC9/10^{2}$	0.07	0.05	0.07	0.09	0.05	0.11	0.10	0.05	0.11	0.10	0.07	0.07
$FC10/10^{3}$	0.68	0.50	0.78	0.65	0.34	0.88	0.64	0.30	0.72	0.98	0.63	0.76

Заключение

Выполненный корреляционный анализ показал:

- для всех типов CB самая тесная корреляционная связь и самые высокие значения коэффициента корреляции получены для связи в парах *FC-ap*;

- для всех типов CB самая слабая корреляционная связь и самые низкие значения коэффициента корреляции получены для связи *FC-Dst**;

- для *ар*-индекса, для которого получены статистически значимые высокие значения коэффициентов корреляции, наибольшая геоэффективность функций связи, определенная по значениям коэффициентов регрессии, характерна для Sheath- и MC-событий в CB.

- соотношения между эффективностями функций *FC* в разных типах CB, определенных по значениям коэффициентов регрессии, зависят от вида *FC*.

Список литературы

- Newel P.T., Sotirelis T., Liou K., Meng C.-I., Rich F.J.: A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res., 112, A01206, doi:10.1029/2006JA012015, 2007.
- 2. Borovsky J.E.: Canonical correlation analysis of the combined solar-wind and geomagnetic-index data sets J. Geophys. Res., 119, doi 10.1002/2013JA019607, 2014.
- 3. Borovsky J.E., Birn J.: The solar wind electric field does not control the dayside reconnection rate, J. Geophys. Res. Space Physics., 119, doi:10.1002/2013JA019193, 2014.
- 4. Burton R.K., McPherron R.L., Russel C. J.: An empirical relationship between interplanetary conditions and *Dst*, Geophys. Res., 80, 4204- 4214, 1975.
- Kan J.R., Lee L.C.: Energy coupling function and solar wind-magnetosphere dynamo, Geophys. Res. Lett., 6, 577-580, 1979.
- 6. Wygant J.R., Torbert R.B., Mozer F.S.: Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection, J. Geophys. Res., 88, 5727-5735, 1983.
- 7. Ермолаев Ю.И., Николаева Н.С., Лодкина И.Г., Ермолаев М.Ю.: Каталог крупномасштабных явлений солнечного ветра для периода 1976–2000 гг., Космические исследования, 47, 2, 99-113, 2009.
- 8. Yermolaev Y.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Y. Geoeffectiveness and efficiency of CIR, sheath and ICME in generation of magnetic storms, J. Geophys. Res., 117, A00L07, doi:10.1029/2011JA017139, 2012.
- Николаева Н.С., Ермолаев Ю.И., Лодкина И.Г.: Зависимость геомагнитной активности во время магнитных бурь от параметров солнечного ветра для разных типов течений, Геомагнетизм и Аэрономия, 51,1, 51–67, 2011.
- 10. Nikolaeva N.S., Yermolaev Y.I., Lodkina I.G.: Predicted dependence of the cross polar cap potential saturation on the type of solar wind stream, Adv. Space Res., doi: doi.org/10.1016/j.asr.2015.06.029, 2015.
- 11. Николаева Н.С., Ермолаев Ю.И., Лодкина И.Г.: Зависит ли генерация магнитной бури от типа солнечного ветра? Геомагнетизм и Аэрономия, 57, 25, 555–561, 2017.
- 12. Plotnikov I.Y., Barkova E.S.: Nonlinear dependence of Dst and AE indices on the electric field of magnetic clouds, Adv. Space Res., 40, 1858-1862, 2007.
- 13. Despirak I.V., Lubchich A.A., Yahnin A.G. et al.: Development of substorm bulges during different solar wind Structures, Ann. Geophys., 27, 5, 1951–1960, 2009.
- Boroyev R.N., Vasiliev M.S.: Substorm activity during the main phase of magnetic storms induced by the CIR and ICME events, Adv. Space Res., V. 61. P. 348-354. doi:org/10.1016/j.astr.2017.10.031, 2018.
- 15. Temerin M., Li X., J.: Dst model for 1995-2002, J. Geophys. Res., 111, A04221, doi:10.1029/2005JA011257, 2006.
- 16. Perreault P., Akasofu S.-I.: A study of geomagnetic storms, Geophys. J. Int. 54, 547-573, 1978.