

ИСПОЛЬЗОВАНИЕ МЕТОДА ПОПЕРЕЧНЫХ СМЕЩЕНИЙ ДЛЯ РАСЧЕТА РАДИОТРАСС В МОДЕЛЬНОЙ ИОНОСФЕРЕ

И.А. Носиков¹, П.Ф. Бессараб², М.В. Клименко^{1,3}, В.В. Клименко³, Ф.С. Бессараб^{1,3}

¹Балтийский федеральный университет имени Иммануила Канта, Калининград, e-mail:igor.nosikov@gmail.com

²Королевский технологический институт, Электрум 229, SE-16440, г. Стокгольм, Швеция ³Западное отделение Института земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН, Калининград

Аннотация

Предложен новый подход к решению задачи о распространении радиоволн в модельной ионосфере с фиксированными точками излучения и приема. Решение задачи рассматривается в приближении геометрической оптики для радиоволн КВ-диапазона. В основе предлагаемого метода лежит принцип Ферма для функционала оптической длины пути радиолуча. Радиотрасса находится путем прямой минимизации функционала. Приведены примеры тестирования и оптимизации метода поперечных смещений в модельных изотропных средах. Результаты численных расчетов сравниваются с известными аналитическими решениями. Продемонстрирована возможность получения нескольких решений в виде верхних и нижних лучей.

Введение

В настоящее время в рамках задачи моделирования распространения коротких радиоволн в ионосфере для нахождения поля волны в приближении геометрической оптики широко применяется метод численного решения задачи Коши с начальными условиями, когда положение точки приёма не закреплено [Карпачев и др., 2010; Кравцов и др., 1980; Котова и др., 2014; Haselgrove, 1963]. Однако, с точки зрения практических приложений более актуальной является задача о расчете траектории радиолуча с заданными координатами точек излучения и приема, которая на практике решается методом стрельбы. В единственной известной авторам работе [Coleman, 2011] предлагается вариант решения данной задачи с использованием прямого вариационного метода, который, однако, не применим для расчета сильно искривленных радиотрасс. В данной работе представлены результаты, полученные с использованием развитого и отлаженного подхода, основанного на применении вариационного принципа к функционалу оптической длины пути напрямую, без необходимости решать уравнения Эйлера-Лагранжа. Идея метода заключается в том, что некая первоначально заданная траектория (начальное приближение) последовательно трансформируется в оптимальную, причем ее концы на протяжении всего процесса оптимизации зафиксированы в соответствии с граничными условиями. Важным достоинством такого подхода по сравнению с методом стрельбы является автоматическое выполнение граничных условий для радиотрассы: начальная и конечная точки по определению совпадают с положением передатчика и приемника радиоволны, соответственно. При этом положения передатчика и приемника можно задавать произвольным образом. Известны варианты использования такого метода последовательных трансформаций в различных областях науки, где необходимо вычислять пути с закрепленными концами [Mills et al., 1994; Bessarab et al., 2013].

Метод поперечных смещений

Согласно принципу Ферма, траектория радиолуча обеспечивает экстремум (минимум) функционала оптической длины пути

$$S[\gamma] = \int_{A}^{B} n(\vec{r}) \, dl \tag{1}$$

Здесь интегрирование производится вдоль кривой γ , задающей траекторию луча, которая соединяет точки A и B, $n(\vec{r})$ — показатель преломления в точке $\vec{r} = (x, y, z)$, лежащей на кривой γ , и dl — элемент длины вдоль γ . При этом, изначально кривая γ является начальным приближением решения задачи нахождения траектории радиолуча. Поскольку форма кривой γ задается произвольным образом, то задача сводится к поиску минимума функции $S[\gamma]$. Для упрощения численных расчетов на первом этапе интегрирование в (1) осуществлялось методом трапеций

$$S[\gamma] \approx S(\vec{r}_1, \vec{r}_2, ..., \vec{r}_N) = \frac{1}{2} \sum_{i=1}^{N-1} (n_i + n_{i+1}) \left| \vec{r}_{i+1} - \vec{r}_i \right|$$
(2)

Многие численные методы поиска минимума многомерной функции основаны на вычислении антиградиента целевой функции

$$\vec{F} = -\nabla S \tag{3}$$

В данном случае \vec{F} имеет смысл силы, действующей в каждой точке кривой γ . Эта сила стремится выстроить точки вдоль искомой траектории радиотрассы. Однако использование силы \vec{F} в процессе оптимизации приводит к значительным вычислительным затратам. Решить эту проблему позволяет процедура проецирования силы \vec{F} на направление, ортогональное к кривой γ , которая была предложена в методе «подталкивания упругой нити» [*Mills et al.*, 1994]. Тогда силу \vec{F} следует заменить на ее ортогональную проекцию \vec{F}_{\perp} , каждая компонента \vec{F}_{\perp}^{i} которой определяется по следующей формуле

$$\vec{F}_{\perp}^{i} = \vec{F}^{i} - (\vec{F}^{i} \cdot \vec{\tau}_{i})\vec{\tau}_{i} \tag{4}$$

где $\vec{\tau}_i$ — единичный вектор касательной к кривой γ . Именно силу \vec{F}_{\perp} следует использовать в процедуре минимизации функционала *S*.

минимизации функционала 5.

Оптимизация численного расчета

Одним из главных критериев пригодности использования любой методики решения задачи на практике является скорость сходимости вычислений. В связи с этим оптимизация работы метода «поперечных смещений» для расчета радиотрасс является одной из ключевых задач.

Как упоминалось ранее, метод поперечных смещений содержит процедуру проецирования сил с целью ускорения расчетов. Тестирование метода «поперечных смещений» для среды с показателем преломления, заданным в виде параболического слоя, показало, что данная процедура позволяет сократить вычислительные затраты на 2 порядка при незначительном уменьшении точности расчетов оптической длины пути [*Носиков и др.*, 2015]. При этом следует отметить, что возможности оптимизации численных расчетов этим методом пока далеко не исчерпаны.

Следующим шагом к уменьшению вычислительных затрат является использование более точного способа интегрирования методом Симпсона в выражении (1). Для этого параметризуем кривую γ . Выражение (1) принимает при этом следующий вид

$$S[\gamma] = \int_{A}^{B} n(\vec{r}(t)) \cdot \frac{d|\vec{r}(t)|}{dt} dt$$
(5)

где t – параметр кривой γ ; элемент длины $d\vec{l} = \frac{d|\vec{r}(t)|}{dt}dt$; $\vec{r}(t)$ – годограф кривой γ . Переписав (5), воспользовавшись формулой метода Симпсона, получаем выражение для приближенного расчета функционала

$$S[\gamma] \approx \frac{h}{3} \sum_{i=1,2}^{N-1} \left[n(\vec{r}_{i-1}) \frac{d|\vec{r}(t)|}{dt} \right]_{t_{i-1}} + 4 \cdot n(\vec{r}_{i}) \frac{d|\vec{r}(t)|}{dt} \Big|_{t_{i}} + n(\vec{r}_{i+1}) \frac{d|\vec{r}(t)|}{dt} \Big|_{t_{i+1}} \right]$$
(6)

где h – величина шага разбиения, i = 1,2 означает, что индекс меняется от 1 с шагом 2. Результаты расчетов с использованием метода трапеций и метода Симпсона представлены в табл. 1. Сравнение полученных результатов показывает преимущества использования метода Симпсона для расчета интеграла по сравнению с методом трапеций, как в скорости расчетов, так и точности определения параметров сходимости.

Число точек	Bper	Время, с		Число итераций		Оптическая длина пути		Угол возвышения, град.		Максимальная высота	
	Ι	II	Ι	II	Ι	II	Ι	II	Ι	II	
5	0.8	0.5	37	26	3.5314	3.5300	44.1	46.0	0.8050	0.8244	
10	0.9	0.8	51	44	3.5257	3.5256	50.5	51.0	0.8257	0.8320	
15	1.7	1.6	112	99	3.5254	3.5254	51.7	52.0	0.8296	0.8320	
20	2.1	1.9	136	101	3.5254	3.5254	52.3	52.4	0.8307	0.8322	

Таблица 1. Результаты расчетов с использованием метода трапеций (I) и метода Симпсона (II).

Согласно аналитическому решению оптическая длина пути составляет 3.5254, угол возвышения 53.6° и максимальная высота 0.8320.

Отметим, что критерием сходимости метода «поперечных смещений» является малость всех сил, действующих в каждой точке кривой ($\forall i : \vec{F}_{\perp}^i < 0.001$). При этом другими критериями сходимости могут быть такие параметры, как угол возвышения, максимальная высота (для отраженной трассы) или оптическая длина пути радиолуча. Их выбор определяется спецификой задачи. В нашем случае использование в качестве критерия сходимости метода требования малости всех сил является универсальным, при выполнении которого автоматически сходятся все вышеуказанные параметры.

Применение метода в модельной ионосфере

Дальнейшая апробация метода «поперечных смещений» осуществлялась в модельной изотропной ионосфере. Зависимость электронной концентрации N_e от высоты *у* выбиралась следующим образом:

$$N_{e}(y) = \begin{cases} N_{e\max} \cdot \left(1 - \frac{(y - y_{0})^{2}}{y_{m}^{2}}\right), & |y - y_{0}| \le y_{m} \\ 0, & |y - y_{0}| > y_{m} \end{cases}$$
(7)

где $y_0 = 300 \,\mathrm{km}$ – высота максимума электронной концентрации на высотах ионосферы, $y_m = 220 \,\mathrm{km}$ – полутолщина слоя, $N_{e\,\mathrm{max}} = 1\cdot 10^6 \,\mathrm{cm}^{-3}$ – значение электронной концентрации в максимуме параболического слоя.

Показатель преломления среды при отсутствии магнитного поля и соударений может быть записан в виде:

$$n^{2} = 1 - \frac{f_{p}^{2}}{f^{2}} = 1 - \frac{80.8 \cdot N_{e}(y)}{f^{2}}$$
(8)

где f – частота радиоволны, f_p – плазменная частота, определяемая выражением $f_p = 8.99 \sqrt{N_e}$. Таким образом, показатель преломления зависит не только от свойств среды, но и от частоты излучаемой радиоволны. При этом критическая частота параболического слоя $f_{\rm cr}$ определяется по формуле $f_{cr} = 8.99 \sqrt{N_{emax}}$ и равна в нашем случае 8.99 МГц. На рис.1 представлены результаты расчетов для радиоволны с частотой 15 МГц на фоне распределения плазменной частоты. В данном случае частота радиоволны расположена в диапазоне $f_{cr} < f < M\Pi \Psi$, что соответствует двум решениям (нижний и верхний лучи). Отметим, что известные решения совпадают с решениями, аналитические полученными методом «поперечных смещений». При этом оптическая длина пути нижнего луча (S₂ = 942.2 км) больше оптической длины верхнего луча (S₁ = 940.8 км). Это говорит о том, что глобальный минимум функционала соответствует верхнему решению.

Метод «поперечных смещений позволяет получать решения для радиотрасс, проходящих сквозь ионосферу. Пример таких расчетов показан на рис. 2 для радиоволны с частотой 14 МГц. Здесь положение передатчика зафиксировано на Земле, а приемник расположен в 6-ти различных местах на высоте 600 км. При этом наибольшее искривление

Рисунок 1. Результаты расчетов радиотрасс, полученных с помощью метода «поперечных смещений», на фоне распределения плазменной частоты для частоты 15 МГц. Аналитическое решение показано черной сплошной кривой, численное решение – черными кружками.

Рисунок 2. Примеры расчета радиотрасс с частотой 14 МГц проходящих сквозь модельную ионосферу. Положения приемников выбрано в 6-ти различных местах на высоте 600 км.

Рисунок 3. Результаты расчетов радиотрасс, полученных с помощью метода «поперечных смещений», в среде с параболическим распределением электронной концентрации для различных частот.

траекторий соответствует трассам с наименьшими углами возвышения к горизонту, что соответствует известным теоретическим представлениям.

На рис. 3 представлены результаты расчетов радиотрасс с различными значениями частот излучения (12 – 14 МГц). Отметим, что с увеличением частоты от f_{cr} до МПЧ высота отражения от ионосферы уменьшается. Для частот выше МПЧ метод «поперечных смещений» либо находит решение, которое располагается на поверхности Земли, либо алгоритм расходится и решение находится в недостижимых областях. И в том, и другом случае результат указывает на отсутствие трасс, отраженных от ионосферы. Аналогичная ситуация возникает при расположении приемника в мертвой зоне.

Заключение

Представлен новый подход к решению задачи о распространении радиоволн КВ-диапазона с фиксированными точками излучения и приема в модельной изотропной среде. Проведенные расчеты показали, что метод «поперечных смещений» позволяет находить решения в виде верхних, нижних и проходящих сквозь ионосферу радиолучей при рассмотрении среды, заданной в виде классического параболического слоя без учета влияния магнитного поля.

Проведенная оптимизация методом Симпсона позволила сократить число итераций и время расчета, а также увеличить точность получаемых результатов.

Работа выполнена при финансовой поддержке гранта РФФИ №15-35-20364. Работа проводилась в рамках проекта "Физические механизмы формирования реакции верхней атмосферы и ионосферы на процессы в нижней атмосфере и на поверхности Земли" (Государственное задание Министерства образования и науки РФ, конкурсная часть, задание № 3.1127.2014/К).

Литература

Жбанков Г.А., Карпачев А.Т., Телегин В.А., Цыбуля К.Г. (2010). Особенности распространения радиоволн со спутника «Интеркосмос-19» в области зимнего гребня ночной экваториальной аномалии. *Геомагнетизм и аэрономия*. Т. 50, № 1. С. 123–130.

Кравцов Ю.А., Орлов Ю.И. 1980. Геометрическая оптика неоднородных сред. М.: Наука. 304 с.

Котова Д.С., Клименко М.В., Клименко В.В., Захаров В.Е. (2014). Известия ВУЗов. Радиофизика. Т. LVII, № 7, С. 519-530.

Bessarab, P. F., Uzdin, V. M., & Jónsson, H. (2012). Harmonic transition-state theory of thermal spin transitions. *Physical Review* B, 85(18), 184409.

Coleman, C. J. (2011). Point to point ionospheric ray tracing by a direct variational method. Radio Science, 46(5). Haselgrove, J. (1963). The Hamiltonian ray path equations. *Journal of Atmospheric and Terrestrial Physics*, 25(7), 397-399.

Mills, G., & Jónsson, H. (1994). Quantum and thermal effects in H 2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems. *Physical review letters*, 72(7), 1124.

Яковлев О.И., Якубов В.П., Урядов В.П., Павельев А.Г. (2009). Распространение радиоволн. – М.: Ленанд, – 496 с.

Носиков И.А., Бессараб П.Ф., Клименко М.В. (2015). Применение метода «поперечных смещений» для расчета радиотрасс волн КВ-диапазона – постановка задачи и предварительные результаты. Известия ВУЗов. Радиофизика (в печати).