

Polar

Institute

Geophysical

МОДЕЛЬ СИГНАЛА, ОТРАЖЕННОГО ОТ АВРОРАЛЬНЫХ НЕОДНОРОДНОСТЕЙ СЛОЯ Е, ДЛЯ НАДГОРИЗОНТНОЙ РЛС ДАЛЬНЕГО ОБНАРУЖЕНИЯ УКВ ДИАПАЗОНА

И.В. Тютин, В.Б. Оводенко, С.А. Пушай

ОАО НПК НИИДАР, г. Москва, Россия, e-mail: tyutin@physics.msu.ru

Аннотация

В работе представлено описание модели сигнала, отраженного от авроральных неоднородностей слоя Е в приемнике РЛС дальнего обнаружения (ДО). На основе параметров РЛС и рассчитываемых ракурсных углов и геомагнитных условий производится оценка энергетических характеристик помехи: отношения помеха-шум (ОПШ) и эффективной поверхности рассеяния (ЭПР). Особенностью модели является учет пространственного распределения отражающих областей полярной ионосферы, боковых лепестков диаграммы направленности антенны на излучение и прием, боковых лепестков функции неопределенности (ФН) зондирующего сигнала. Результаты моделирования показали, что при определенных условиях боковые лепестки диаграммы направленности (ДН) и боковые лепестки ФН вносят заметный вклад (до нескольких дБ) в суммарный отраженный сигнал.

Введение

РЛС УКВ диапазона периодически регистрируют "отражения" из северного квадранта. Исследования, проведенные, например в [1, 2], показали, что "отражения" - это анизотропное рассеяние радиоволн от ионосферных неоднородностей. Рассеянный сигнал приходит с дальностей 500 – 1000 км. За когерентное рассеяние ответственны плазменные неустойчивости (Фарлей-Бунимановские и дрейфовые неустойчивости [1]) Е и F слоев ионосферы, формирующие неоднородности концентрации электронов, вытянутые вдоль силовых линий магнитного поля. Продольный размер таких неоднородностей в 10-30 раз больше их поперечного размера, который имеет масштаб от сантиметров до километров [2]. По этой причине рассеянный сигнал когерентен вдоль силовой линии магнитного поля в пределах 5-15 длин волн радара [3]. Из-за вытянутости неоднородностей вдоль силовых линий интенсивность рассеяния максимальна при ракурсном угле близком к 0 (перпендикулярность луча радара и линии магнитного поля). Ракурсным называют наименьший угол, образованный нормалью вектора геомагнитного поля и вектором "луча" радара. Локусом – изолинии ракурсного угла. Поэтому такое обратное рассеяние радиоволн от ионосферных неоднородностей называю ракурсным рассеянием радиоволн (РРР), а факт существования большого числа таких неоднородностей в ионосфере - радиоавророй (термин, определенный на 14 сессии Генеральной Ассамблеи МАГА). РРР часто встречается в авроральной ионосфере в слое Е (высоты возникновения от 90 км до 120 км, [4]). Наиболее вероятное время обнаружение рассеянного сигнала с 20 до 8 часов LT (местного времени) [5].

Модель сигнала помехи в приемном тракте РЛС

Рассмотрим модель формирования сигнала в приемнике РЛС. Зондирующий импульс формируется передающей антенной решеткой РЛС. При прохождении импульса через Е слой ионосферы на высотах 110 - 120 км происходит ракурсное рассеяние зондирующей волны. Отражения от этих неоднородностей регистрируются приемной антенной решеткой РЛС. Далее в оптимальном фильтре происходит накопление и когерентное сложение регистрируемых сигналов в течение времени накопления. Энергетические характеристики результирующего сигнала, отраженного от помехи и цели после такого суммирования, являются результатом расчета представляемой модели. В таком виде сигнал поступает в приемный тракт РЛС.

В модели используется фасеточное представление пространства, «освещаемого» радиоволной от передающей антенной решетки РЛС. Таким образом, слой с ионосферными неоднородностями в фасеточном представлении имеет вид набора ячеек с выбранным размером и содержащим ряд параметров: координаты фасета, импульсный объем, ракурсный угол. Предполагается, что внутри фасеты перечисленные параметры не меняются. Размер фасеты задается наклонной дальностью, углом места и азимутом ($\Delta R; \Delta \varepsilon; \Delta \beta$) в местной сферической системе координат, связанной с географическими направлениями в точке стояния РЛС (МССКГ). Значение $\Delta \varepsilon$ выбирается исходя из разрешающей способности современных РЛС по дальности. Значение $\Delta \varepsilon$ выбирается исходя из разрешающей способности РЛС по углу места и ширины главного и первых боковых лепестков диаграммы

направленности антенны (ДНА) на прием и передачу. Азимутальный размер фасеты обусловлен шириной ДНА. Вектор геомагнитного поля, для расчета ракурсного угла, рассчитывался по модели IGRF.

Возможность регистрации помехи определяет отношение помеха-шум (ОПШ). Для оценки данной энергетической характеристики помехи от отдельной фасеты, содержащей помеху, воспользуемся основным уравнением радиолокации в следующем виде:

$$CNR_{\varepsilon,\beta,R} = \frac{\prod_{0} \sigma R_{0}^{3} cT}{2R^{4}} F_{u_{3R}}(\varepsilon,\beta) F_{np}(\varepsilon,\beta) \chi(R),$$

$$\sigma = nV$$
(1)

где П₀ - энергетический потенциал РЛС (отношение сигнал шум от цели на наклонной дальности 1000 км, с эффективной площадью рассеяния (ЭПР) 1 м² энергетический потенциал РЛС); σ - ЭПР; η - удельная ЭПР; V - импульсный объем фасеты (объем фасеты, освещенной РЛС); F - диаграмма направленности антенны на излучение или прием; χ - сечение функция неопределенности сигнала (ФНС) по дальности.

Суммируя по импульсному объему зондирующего сигнала, содержащему неоднородности, получаем выражение для суммарного ОПШ:

$$CNR_{total} = \sum_{\varepsilon} \sum_{\beta} \sum_{R} CNR(\varepsilon, \beta, R).$$
⁽²⁾

Важной особенностью данной модели является учет боковых лепестков ДНА и ФНС. Рассмотрим следующие ситуации при регистрации рассеянного сигнала:

 Главный пик проекции ФНС по дальности пересекает слой неоднородностей (рис. 1а). Таким образом, обеспечивается сильное подавление рассеянного сигнала от ионосферных неоднородностей вне главного лепестка ФНС. К ослаблению сигнала на боковых лепестках ФНС в 50 дБ добавляется ослабление в 20 дБ от боковых лепестков угломестной ДНА. Результаты моделирования показали, что сигнал от боковых лепестков ФНС не достигает порога обнаружения РЛС (10 - 15 дБ).

2) Главный пик проекции ФНС по дальности находится вне слоя неоднородностей (рис. 16). Таким образом, происходит усиление сигнала на боковых лепестках ФНС и на боковых лепестках угломестной ДНА. Создается возможность регистрации сигнал, рассеянного на ионосферных неоднородностях не только в главном лепестке ФНС, но и на его боковых лепестках.

Рисунок 1. Геометрия приема сигнала от помехи. **a)** главный лепесток ФНС пресекает слой помех, прием осуществляется главным лепестком ФНС; **б)** главный лепесток ФНС находится вне слоя помех, прием осуществляется по главному и боковым лепесткам ФНС

Кроме угломестной проекции ДНА при наличии нулевых локусов в секторе обзора РЛС, важно учитывать и боковые азимутальные лепестки ДНА. Как будет показано ниже, сигнал по боковым лепесткам может также давать превышение порога обнаружения.

Исходные данные для расчета

Для расчета ОПШ сигнала, рассеянного от ионосферных неоднородностей, и оценки вклада помехи по боковым лепесткам ДНА и ФНС в общее значение ОПШ были выбраны следующие входные параметры:

- Точка стояния РЛС 104⁰ в.д., 52⁰ с.ш., Н = 500м (г. Иркутск)
- F = 440 МГц рабочая частота РЛС
- η = -95дБм⁻¹ наиболее вероятная удельная ЭПР для данной рабочей частоты РЛС
- $\Pi_0 = 60 \ \text{дБ}$ энергетический потенциал РЛС
- $\beta = 300^{\circ} 60^{\circ} азимутальный сектор обзора (через ноль)$

И.В. Тютин и др.

• Центральное значение азимута сектора обзора РЛС $\beta_0 = 0^0$

Точка стояния рядом с г. Иркутск была выбрана из-за наличия нулевых локусов (изолиний со значением ракурсных углов равное 0°) в секторе обзора станции (рис. 2). Из экспериментальных данных известно [5], что ослабление рассеянного от неоднородностей сигнала при отличии ракурсного угла отличного от нулевого значения имеет следующий вид:

- при ракурсных углах меньше 3°, ослабление увеличивается на 3 дБ с каждым градусом
- при ракурсных углах больше 3°, ослабление составляет 10,5 дБ на каждый градус.

Диаграммы направленности антенны на прием и передачу совпадают и имеют вид $\frac{\sin x}{x}$.

В качестве зондирующего сигнала используется ЛЧМ сигнал.

Рисунок 2. Изолинии ракурсных углов на высоте 115 км для станции с точкой стояния в г. Иркутск

Расчет ОПШ с учетом боковых азимутальных лепестков ДНА

На рис. 3 приведены результаты расчета, наглядно показывающие как учет азимутальных лепестков ДНА влияет на регистрацию. Пунктиром показано ОПШ только в главном лепестке ФНС. Сплошной линией показан случай учета боковых лепестков ФНС и ДНА. В этом случае рассеянный сигнал суммируется не только в пике ФНС, но и по боковым лепесткам ФНС и азимутально-угломестным проекциям ДНА. Сравнивая ОПШ на рис. 3 можно оценить вклад сигналов, полученных боковыми лепестками ФНС и азимутальной ДНА. Их учет дает вклад ~6 дБ, что делает возможным превышение порога обнаружения (~10-15 дБ) для боковых лепестков ФНС.

Рисунок 3. ОПШ ЛЧМ сигнала, рассеянного от ионосферных неоднородностей. Пунктиром показана реализация геометрии 1, сплошная линия показывает суммарное ОПШ обеих геометрий.

Выводы

Современные РЛС дальнего обнаружения обладают высоким энергетическим потенциалом, т.е. имеют высокую чувствительность. Следствием этого стала возможность регистрации помехи не только в главном лепестке ФНС и ДНА, но и боковыми лепестками, что увеличивает вероятность ложных отметок.

Предложенная фасеточная модель сигнала авроральной помехи позволяет численно оценить энергетические характеристики отражений от ионосферных неоднородностей слоя Е. Учет в расчетах радиоотражений, принимаемых из главного лепестка диаграммы направленности антенны (ДНА) по углу места, модулируемых боковыми лепестками функции неопределенности сигнала (ФНС) и боковыми азимутальными лепестками ДНА необходим для корректного определения интенсивности помехи. Полученные результаты подтверждаются экспериментальными данными сна РЛС в северных широтах с сектором обзора, направленным на север.

Список литературы

- 1. Unwin R.S., Knox F.B. The morphology of the VHF radio aurora at sunspot maximum. IV. Theory. J. Atmos. Terr. Phys., 1968, v. 30, N 1, p. 25-46.
- 2. Uspensky M. V., Janhunen1 P., Koustov A. V. and Kauristie K. Volume cross section of auroral radar backscatter and RMS plasma fluctuations inferred from coherent and incoherent scatter data: a response on backscatter volume parameters. *Ann. Geophys.*, 29, 1081–1092, 2011.
- 3. Успенского М.В. и СтарковаГ.В. Полярные сияния и рассеяние радиоволн. Л.: Наука. Ленингр. отдние, 1987.УДК 550.388
- 4. Fejer B. G., Kelley M. C. Ionospheric irregularities. Rev. Geophys. and Space Phys. 1980. Vol. 18., P. 401-454.
- 5. Эгеланда А., Холтер О., Омхольт А. Космическая геофизика. Издательство "Мир", Москва 1976, стр. 492