

МОДЕЛИРОВАНИЕ ПОТОКА ВЕКТОРА ПОЙТИНГА НАД ДУГОЙ СИЯНИЯ

М.А. Волков (Мурманский Государственный Технический Университет, ул. Спортивная 13, Мурманск, 183010, e-mail: volkovma@mstu.edu.ru)

Аннотация. В работе получено решение для электрического поля в дуге полярного сияния, согласованное с токами, втекающими и вытекающими из дуги. Токи, втекающие и вытекающие из дуги, задавались модельно тогда, как токи поперек дуги рассчитывались с учетом процессов ионизации и рекомбинации в ионосфере. Вектор Пойтинга над дугой сияния может быть представлен суммой двух слагаемых, каждое из которых определяет плотность потока энергии электромагнитного поля определенной поляризации, в этих потоках электрического поля может быть направлен из дуги. Вектор Пойтинга с поперечной поляризацией электрического поля может быть направлен из дуги сияния в магнитосферу и быть порядка нескольких мВт/м². Вектор Пойтинга продольной поляризации над дугой сияния всегда направлен в ионосферу и достигает 20 мВт/м².

Введение

Вопрос об ионосферных или магнитосферных механизмах генерации дуги полярного сияния до сих пор остается открытым. Энергия в дугу сияния может поступать как в корпускулярной форме, так и в электромагнитной. Возможны также переходы из одной формы энергии в другую. В ряде работ рассмотрена ситуация, когда поток электромагнитной энергии направлен из дуги сияния в магнитосферу [Atkinson, 1970; Sato and Holzer, 1973; Леонтьев и Ляцкий, 1982; Haerendel, 2008]. Поток энергии из дуги может возвращаться обратно, отразившись от сопряженной ионосферы [Sato and Holzer, 1973] или от области дивергенции поперечного тока в магнитосфере [Леонтьев и Ляцкий, 1982; Haerendel, 2008]. Прямые измерения потоков электромагнитной энергии над дугами дают противоречивые результаты, т.к. измеряется мгновенное, сильно флуктуирующее значение вектора Пойтинга. Выделение же постоянной составляющей этого вектора затруднено коротким временным промежутком наблюдений из-за малых поперечных размеров дуги сияния [Marghitu et al., 2009]. В настоящей работе приведены модельные расчеты электрического поля и токов поперек дуги полярного сияния, на основании этих расчетов построена модель потока вектора Пойтинга над дугой сияния. Входными параметрами модели являются токи, втекающие и вытекающие из дуги сияния. При расчете концентрации плазмы в дуге учитываются процессы ионизации, рекомбинации и переноса. Источник ионизации в дуге сияния моделируется вытекающим из дуги током.

Система основных уравнений

Уравнение непрерывности для электронов с учетом процессов ионизации и рекомбинации имеет следующий вид:

$$\partial n/\partial t + \operatorname{div}(n\mathbf{v}) = \alpha (j_{\parallel}^{2}) - r(n^{2} - n_{0}^{2}), \tag{1}$$

где *n*,*v*-концентрация и скорость электронов, *n*₀-фоновое значение концентрации, *r*- коэффициент рекомбинации (квадратичный закон рекомбинации выполняется для высот *E* слоя), $\alpha(j_{//}^2)$ -мощность ионизации, зависящая от плотности продольного тока $j_{//}$, $\alpha=0$ для втекающего тока. Квадратичную зависимость мощности ионизации от вытекающего тока можно обосновать следующим образом. Поток высыпающихся электронов пропорционален $j_{//}$. Средняя энергия, высыпающихся в дугу электронов, пропорциональна ускоряющей разности потенциалов между ионосферой и магнитосферой, которую можно считать также пропорциональной току. Тогда поток энергии электронов или мощность ионизации ~ $j_{//}^2$. Полный ток *j* вдоль и поперек магнитного поля в ионосфере удовлетворяет уравнению непрерывности:

Используем прямоугольную систему координат, ось *у* направим на восток, ось *х* к полюсу, ось *z* вниз, вдоль магнитного поля (северное полушарие). Дуга сияния вытянута вдоль оси *у* рис.1.

Рис. 1 E_{0y} , E_{0x} – электрическое поле крупномасштабной ионосферной конвекции. Σ_{p0} , Σ_{h0} , Σ_p , Σ_h -проинтегрированные по высоте ионосферы проводимости Педерсена (р) и Холла (h) вне дуги (индекс 0) и внутри дуги. $I_{x,y}$ - интегральный ионосферный ток в дуге сияния.

В дуге сияния будем считать выполненным условие $\partial/\partial y=0$. На высоте *E* слоя частоты столкновения ионов с нейтральными частицами $v_{in} \gg \omega_i$ -ионной гирочастоты, для электронов это соотношение обратное $v_{en} << \omega_e$, тогда основной вклад в Σ_p дают ионы, а в проводимость Σ_h электроны. Электроны движутся поперек магнитных силовых линий со скоростью электрического дрейфа v=E/B (В-магнитная индукция в ионосфере). Вдоль магнитных силовых линий движение электронов переносит продольный ток в дугу или из дуги сияния. Амбиполярной диффузией электронов и ионов вдоль магнитных силовых линий пренебрегаем, в этом случае движение ионов будет направлено только поперек магнитных силовых линий. Проинтегрировав уравнения (1-2) вдоль магнитного поля по высоте ионосферы получим уравнения, зависящие только от координаты *x* и времени *t*:

$$\frac{\partial N}{\partial t} + E_{0y} / B \frac{\partial N}{\partial x} = \alpha (j_z^2) h + j_z / e - r (N^2 - N_0^2) / h, \qquad (3)$$

$$E_{x}\Sigma_{p} = I_{z}(x) + (\Sigma_{h} - \Sigma_{h0})E_{0y} + \Sigma_{p0}E_{0x},$$
(4)

где $I_z = \int_0^x j_z dz$ - ток, втекающий в дугу, $N = \int_0^n n dz$, - проинтегрированная по высоте ионосферы

концентрация электронов, h - высота ионосферы, е-элементарный заряд, $\Sigma_{p,h} = \int_{0}^{h} \sigma_{p,h}(z) dz$.

Будем считать, что:
$$N^2 \approx \frac{1}{h} \int_0^h n^2 dz$$
.

В *Е* слое проводимости $\sigma_{p,h}$ зависят не только от концентрации *n*, но и от отношения v_{in}/ω_i , проводимость σ_h зависит практически только от *n*, и пропорциональна *n*. Интегральная проводимость $\Sigma_h \approx eN/B$, в дугах сияний Σ_h в 3÷4 превышает Σ_p примем $\Sigma_h/\Sigma_p=3$. Значения других параметров зададим следующими: $\alpha=10^{-6}$ м⁴/A², r=2 10⁻¹³ м³/с, $N_0=10^{16}$ м⁻³, $E_{0y}=-10^{-2}$ В/м (поле направлено к западу), $E_{0x}=0$, поперечные размеры дуги сияния 30 км.

Распределение концентрации и электрического поля поперек дуги

На рис. 2(b,c) приведены результаты расчетов относительной интегральной концентрации N/N_0 и поперечного электрического поля E_x/E_{0y} для заданного распределения продольного тока j_z (A/км²) (a). В центре дуги электрическое поле отрицательно и направлено против тока, текущего поперек дуги (I_x>0).

Поток электромагнитной энергии над дугой сияния

Определим величину удельных джоулевых потерь в дуге полярного сияния q:

где $\mathbf{I} = (E_x \Sigma_p - \Sigma_h E_{0y}) \mathbf{e}_x + (\Sigma_p E_{0y} + \Sigma_h E_x) \mathbf{e}_y,$

Моделирование потока вектора Пойтинга над дугой сияния

$$\mathbf{E} = E_x \mathbf{e}_x + E_{0y} \mathbf{e}_y$$

(5)

(6) (7)

 $e_{x,y}$ -единичные вектора, направленные вдоль осей *x* и *y*,

$$q = \Sigma_{\rm p} ({\rm E_x}^2 + {\rm E_{0y}}^2).$$

Поток электромагнитной энергии:

 $P = [E \times H],$

Напряженность магнитного поля **H** определяется магнитным полем продольного тока j_z и полем ионосферного тока **I**. В случае однородной ионосферы магнитные поля, создаваемые продольным током и током Педерсена I_p одинаковы над токовым слоем (ионосфера) и одинаковы по величине, но противоположны по направлению под ним. Результирующее магнитное поле токов j_z и I_p ниже ионосферы будет равно нулю. Напряженность магнитного поля над ионосферой тогда можно записать следующим образом:

$$H = [e_z, I_p + I_h/2],$$

С учетом этого выражение для Р примет следующий вид:

$$\mathbf{P} = \Sigma_{\mathrm{p}} (\mathrm{E_x}^2 + \mathrm{E_{0y}}^2) \mathbf{e}_{\mathrm{z}},$$

это выражение совпадает с удельными потерями электромагнитной энергии в ионосфере для *q* (5). Перепишем выражение для **P** несколько другим образом:

$$P=P_{xy}+P_{yx}$$

$$\mathbf{P}_{xy} = \mathbf{E}_{x} \mathbf{H}_{y} \mathbf{e}_{z} = (\Sigma_{p} \mathbf{E}_{x}^{2} - \Sigma_{h} \mathbf{E}_{0y} \mathbf{E}_{x}/2) \mathbf{e}_{z}$$

$$\mathbf{P}_{xy} = -\mathbf{E}_{0y} \mathbf{H}_{x} \mathbf{e}_{z} = (\sum_{p} \mathbf{E}_{0y}^{2} + \sum_{p} \mathbf{E}_{0y} \mathbf{E}_{x}/2) \mathbf{e}_{z}$$
(8)

Рис. 2 (а) модельное распределение продольного тока над дугой сияния, (b) расчетное распределение интегральной концентрации N над дугой сияния в разные моменты времени, характерное время установления стационарного решения 100 с, (c) расчетные значения электрического поля поперек дуги сияния в разные моменты времени, (d) удельные джоулевые потери q над дугой сияния, (e) составляющие вектора Пойтинга над дугой сияния, P_{xy} -с поперечной поляризацией электрического поля.

Каждое слагаемое P_{xy} и P_{yx} в (6) представляет собой плотность потока электромагнитной энергии с определенной поляризацией электрического и магнитного полей. P_{xy} -плотность потока, в котором электрическое поле направлено поперек дуги. P_{yx} – поток с электрическим полем, направленным вдоль дуги. На рис.2(d,e) приведены рассчитанные значения q, P_{xy} и P_{yx} над дугой сияния. В рассматриваемом случае

М.А. Волков

 P_{xy} <0, поток с поперечным электрическим полем направлен из дуги в магнитосферу, P_{xy} >0, поток с продольным электрическим полем направлен в дугу из магнитосферы. Из выражений (7-8) также следует, что поток из ионосферы над дугой не может быть больше потока из магнитосферы, следовательно генератор дуги должен находиться в магнитосфере. С другой стороны существование потока энергии электромагнитного поля другой поляризации в магнитосферу говорит о том, что ионосферу нельзя рассматривать как простую нагрузку магнитосферного генератора, этот поток, возможно, играет значительную роль в механизмах генерации дуг сияний. Наличие потока электромагнитной энергии из дуги является также причиной неоднозначности в определении направления потоков электромагнитной энергии над дугами сияний в экспериментальных данных. По измерениям электрического и магнитого полей с масштабами от нескольких км. до нескольких сотен км. на ионосферном уровне со спутника Dynamics Explorer 2 потоки вектора Пойтинга из ионосферы наблюдаются в 5% случаев [Golovchanskaya and Maltsev, 2004]. В тоже время не все рассмотренные в этой работе события можно отнести к дугам полярных сияний. Выражения (7-8) являются точными только для однородной ионосферы, в неоднородном случае множитель перед вторыми слагаемыми в (7-8) станет другим, но скорее всего, изменится незначительно, т.е. картина распределения потоков сохранится.

Выводы

Вектор Пойтинга над дугой сияния может быть представлен суммой двух слагаемых, каждое из которых определяет плотность потока энергии электромагнитного поля определенной поляризации, в этих потоках электрическое поле ориентировано поперек или вдоль дуги.

Электрическое поле поперек дуги полярного сияния может быть направлено противоположно поперечному электрическому току. В этом случае вектор Пойтинга с поперечной поляризацией электрического поля направлен из дуги сияния в магнитосферу.

Полный вектор Пойтинга всегда направлен в дугу из магнитосферы и равен удельным Джоулевым потерям. Величина вектора Пойтинга продольной поляризации над дугой сияния достигает 20 мВт/м², поперечной несколько мВт/м².

Список литературы

- Atkinson, G. (1970), Auroral arcs: Result of the interaction of a dynamic magnetosphere with the ionosphere, J. Geophys. Res., 75, 4746–4755, doi:10.1029/JA075i025p04746.
- Golovchanskaya, I.V., Y.P. Maltsev (2004), On the direction of the Poynting flux related to the mesoscale electromagnetic turbulence at high latitudes, J. Geophys. Res., 109, A10203, doi:10.1029/2004JA010432.
- Haerendel G. Auroral arcs as current transformers, J. Geophys. Res., vol. 113, A07205, doi:10.1029/2007JA012947, 2008.
- Marghitu O., T. Karlsson, B. Klecker, G. Haerendel, and J. McFadden Auroral arc and oval electrodynamics in the Harang region, J.Geophys.Res., vol. 114, A03214, doi:10.1029/2008JA013630, 2009.
- Sato T., Holzer T.E. Quiet auroral arcs and electrodynamic coupling between the ionosphere and the magnetosphere –J.Geophys.Res.,1973,vol.78,N 7, p. 7314-7329.
- Леонтьев С.В., Ляцкий В.Б. Генерация дуги полярного сияния.- Геомагнетизм и аэрономия , 1982, т. 22, №2, с.318-323.