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Abstract. The magnetoplasma associated with   
magnetic clouds inside the solar wind is analyzed. 
Especially, the behaviour of magnetoplasma in the 
sheath region between the cloud and its shock front 
will be simulated using a Godunov scheme for 
solving the system of governing equations for ideal 
magnetohydrodynamics. A Roe-type Riemann solver 
is applied on a two-dimensional semi-geodetic grid 
reflecting the idealized cylindrical structure of 
magnetic clouds. Two case studies are presented to 
test the validity of the numerical algorithm. First, the 
magnetic cloud is modelled as a solid obstacle and 
the flow of the solar wind plasma around this 
obstacle is simulated. Second, the boundary of the 
magnetic cloud is provided with a magnetic field 
causing magnetic reconnection to appear on the front 
side of the magnetic cloud and leading to an 
expansion of the cloud’s diameter.  
 
1. Introduction 
  
Magnetic clouds (MCs) can be considered as a subset 
of interplanetary coronal mass ejections (ICMEs) 
exhibiting a special plasma and magnetic field 
configuration. The characteristics of MCs are: a low 
plasma-β, low mass density and low ion temperature 
if compared to the ambient solar wind. Furthermore, 
the strong magnetic field of MCs (approximately 15 - 
30 nT) executes a smooth rotation. So, magnetic 
clouds can be visualized as large scale magnetic flux 
ropes with their feet still attached to the sun's 
atmosphere while propagating into interplanetary 
space (Bame et al., 1981; Farrugia et al., 1993). 
Furthermore, MCs are expanding while propagating 
thereby reaching a diameter of 0.2 - 0.4 AU at a 
distance of 1 AU from the sun (see Fig. 1). About 
30% - 40% of all ICMEs can be associated with the 
special type of such magnetic clouds (Gosling, 1990). 
Magnetic clouds are often modelled on the basis of a 
force-free magnetic field model (Lundquist, 1950) in 
combination with cylindrical symmetry for the cloud 
structure (Burlaga, 1988; Lepping et al., 1990). 
Several authors (see e.g., Hu and Sonnerup, 2002; 
Riley and Crooker, 2004) together with various data 
from in-situ observations have shown that 
approximating locally the MC structure by a cylinder 
with circular cross section may be highly idealized. 

This study reinvestigates the major problems with 
regard to magnetic clouds on the basis of a fully self-
consistent numerical model. 
 
 

 
 
Fig. 1: Sketch of a magnetic cloud propagating 
parallel to the ecliptic plane from the sun towards 
Earth. Three selected magnetic field lines are 
highlighted. Near the cloud’s axis, the magnetic field 
is oriented mainly along the axis. Towards the 
cloud’s boundary, magnetic field lines become more 
and more helical. (after Burlaga et al., 1990) 
 
2. The system of ideal MHD governing 
equations 
 
The model applied to magnetic clouds and the 
ambient solar wind is based on the equations of 
magnetohydrodynamics. In the frame of magneto-
hydrodynamics, a plasma is treated with the laws of 
fluid mechanics including also electromagnetic 
forces. For a simple approach, we consider a solar 
wind plasma composed of two fluids, one for the 
electrons and one for the protons (H+). The 
macroscopic fluid equations for the transport of mass, 
momentum, magnetic induction and energy can be 
inferred from kinetic theory. Considering only 
adiabatic motions, i.e., the heat flux vector vanishes, 
they constitute a complete set of MHD governing 
equations. This set of equations can be further 
simplified by assuming a non-viscous and quasi-
neutral plasma in thermal equilibrium. Furthermore, 
the plasma is considered as a highly conducting fluid 
and collisions between plasma particles are 
neglected. 
If the equations of ideal MHD are analyzed 
numerically, the initial condition 0=⋅∇ B

r
 is usually 

not fulfilled throughout the evolution due to 



U. Taubenschuss et al. 
 

142 

numerical diffusion. Powell (1994) proposed to treat 
this difficulty by introducing an additional source 
term leading to a more numerically stable solution. 
Thus, the system of governing equations to be solved 
reads as follows (weakly non-conservative form): 
 

 
(1) 

 
with the total energy E (thermal + kinetic + magnetic 
energy) given as 
 

   (2) 
 
The used symbols have the following meanings:  
ρ  = mass density, u

r
 = bulk velocity, B

r
= magnetic 

induction, p = plasma pressure, γ = ratio of specific 
heats and  I = unity tensor. 
 
3. Numerical solution: a Roe-type 
approximate Riemann solver 
 
A numerical solution for the quasi-linear system of 
eight partial differential equations (1) is derived using 
a Roe-type approximate Riemann solver as proposed 
by Powell (1994). Calculations are performed on a 
semi-geodetic grid given in cylindrical coordinates. 
The space of analysis is divided into cells and a 
global solution is a composition of constant solutions 
found for each cell with discontinuities at the cell 
interfaces.  According to Godunov (1959) the 
discretization of the general system of governing 
equations  
 

    (3) 
 
 (U
r

… parameter vector, F … flux matrix, S
r

… 
source term vector) is defined for the simplified one-
dimensional case as  
 

  (4) 
 
Index i denotes the cell-index in x-direction and index 
n is the time index. The fluxes at the cell interfaces, 
which are indicated by 2/1±iF

r
, are calculated by 

inserting the parameters given at the cell interfaces 
into the flux matrices ( )( 2/12/1 ±± = ii UFF

rrr
).  

The parameters at the cell interfaces are found from 
the eigenvalues and the left and right eigenvectors of 
the linearized Riemann problem (one-dimensional 
case) 
 

    (5) 
 
The matrix A is the matrix of coefficients and 

),,,,,,,( pBBBuuuW zyxzyxρ=
r

 is the vector 
composed of the primitive variables. The eigenvalues 
and the left and right eigenvectors of A belong to 
eight characteristic waves: one entropy wave, two 
Alfvén waves, two slow and two fast magneto-
acoustic waves and one divergence wave. The 
divergence wave results from the 0=⋅∇ B

r
 

constraint and ensures that any 0≠⋅∇ B
r

 created 
locally is convected away. 
The eigenvalues and left and right eigenvectors of A 
at a certain cell interface are calculated from the 
mean of the primitive variables W

r
 with regard to the 

cells left and right from the interface. These mean 
eigenvalues and eigenvectors are then used to 
propagate W

r
 to the cell interfaces and furthermore, 

to derive the fluxes at the cell interfaces. By knowing 

2/1±iF
r

 and n
iS
r

, the 1+n
iU
r

 are computed according to 
equ. (4) in an iterative process. 
 
4. Results 
 
The Roe-type approximate Riemann problem for the 
ideal MHD governing equations has been solved on a 
two-dimensional semi-geodetic grid. Even so, we 
shall not ignore the third component of the velocity 
and magnetic field vectors. Thus, such kind of 
analysis is often referred to as a 2.5-dimensional 
approach. The grid consists of 180 cells in azimuthal 
direction and 201 cells in radial direction. 
Furthermore, all parameters are normalized to solar 
wind quantities at infinity (index ∞) as follows:  

∞= uuu /~ , ∞= ρρρ /~ , )/(~ 2
∞∞= upp ρ  and 

)4/(~ 2
∞∞= uBB πρ . 

At first, the magnetic cloud is modelled as a solid 
obstacle exhibiting a circular cross section and the 
flow of solar wind plasma around such kind of solid 
obstacle is studied. The results for density, velocity, 
pressure and the magnetic field are displayed in Fig. 
2. The origin of the cylindrical coordinate frame is 
fixed with the centre of the MC's circular cross 
section. The solar wind plasma is streaming from the 
right to the left and the interplanetary magnetic field 
is oriented perpendicular to the cloud's axis (from 
bottom to top). As can be seen, a bow shock develops 
upstream, i.e., ahead of the cloud, at a distance of ~2 
RMC to the MC-axis. Inside the sheath region, i.e., 
between the bow shock and the MC boundary, the 
solar wind plasma is decelerating and ρ, p and B are 
increasing.  
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Fig. 2: Simulation results for the parameters density 
(top left), velocity (top right), plasma pressure 
(bottom left) and magnetic field strength (bottom 
right) around a magnetic cloud embedded in the 
ambient solar wind flow. The cloud is modelled as a 
solid obstacle (circular cross section). The solar wind 
streams from right to left. The bow shock upstream of 
the cloud and the formation of a magnetic barrier 
(enhanced B) directly in front of the cloud are clearly 
visible. 
  
The draping of magnetic field lines around the 
obstacle causes a so-called "magnetic barrier" to 
appear on the front side of the cloud (Biernat et al., 
1995; Erkaev et al., 1995) and a neutral line is formed 
on the back side. The magnetic barrier acts as a 
mechanism for acceleration of plasma, thereby 
producing a plasma depleted region, the so-called 
"depletion layer" (Zwan and Wolf, 1976; Erkaev, 
1981, 1988; Farrugia et al., 1997; Biernat et al., 
2005). 
 
As a next step, the possibility of magnetic 
reconnection between the interplanetary magnetic 
field and the magnetic field of the MC is introduced 
(Cargill et al., 1996; McComas et al., 1994). This is 
managed by using appropriate boundary conditions 
for B

r
 on the cloud's surface. In Fig. 3 a situation is 

presented with an anti-parallel orientation of 
magnetic field lines given at the front side of the 
magnetic cloud. This generates a plasma cavity 
around the cloud containing a low-β plasma, i.e., the 
magnetic pressure is much higher than the thermal 
pressure. This affects the evolution of the bow shock 
on the front side and additionally causes a reverse 
shock as the cavity expands. 
 

 
Fig. 3: Simulation results for density, velocity, 
plasma pressure and the magnetic field on the basis 
of a magnetized obstacle for the magnetic cloud. Due 
to magnetic reconnection, the magnetic cloud is 
expanding thereby deforming its circular cross 
section.  
 
5. Conclusions 
 
The system of magnetohydrodynamic governing 
equations is applied to the solar wind plasma for 
modelling a special type of interplanetary coronal 
mass ejections called magnetic clouds. A numerical 
solution is achieved by constructing a Roe-type 
approximate Riemann solver as proposed by Powell 
(1994). In order to test the validity of the algorithm, 
two special configurations for magnetic clouds have 
been processed. First, the MC is modelled as a solid 
obstacle. Already such kind of simple approach 
reveals characteristic structures like formation of a 
bow shock, formation of a magnetic barrier and 
mechanisms for acceleration of plasma (depletion 
layer). Furthermore, the MC is provided with a 
magnetic field. This causes magnetic reconnection 
between the cloud’s magnetic field and the 
interplanetary magnetic field and has significant 
influences on the shape of the MC boundary.  
More detailed studies like the dependence of the 
stand-off distance of the bow shock on the 
configuration of the interplanetary magnetic field or 
the evolution of MCs in a highly structured solar 
wind will be performed in the near future. Finally, 
simulation results will be compared to observational 
data from several spacecraft (WIND, ULYSSES, 
STEREO). 
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