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Abstract. A method of detecting solitons and determine their parameters based on the scattering problem solution 
for the relevant nonlinear equation is developed. As an example the Derivative Nonlinear Schrödinger (DNLS) 
equation has been considered. The integral reflection coefficient, which should rapidly drop when a signal is close to 
N-soliton profile, has been used as a soliton detector. Application of this technique to numerically simulated signals 
shows that it is more efficient than standard Fourier transform and can be used as a practical tool for the analysis of 
outputs from nonlinear systems.  
 
Introduction: Solitons in geophysical media 
 
Nonlinear waves and solitons are commonly observed 
in various geophysical media: the interplanetary space 
[Ovenden et al., 1983], near-Earth plasma [Patel and 
Dasgupta, 1987; Baumgärtel, 1999], atmosphere 
[Shen, 1966; Pelinovsky and Romanova, 1977; Petvi-
ashvili and Pokhotelov, 1992], Earth's crust [Lund, 
1983]. Solitons are the basic structural elements of 
developed turbulence, because a disturbance with 
finite amplitude in a nonlinear medium commonly 
evolves to the soliton state. The modern theory pre-
dicts and has mathematical tools to describe N-soliton 
structures and soliton turbulence gas [Gurevich et al., 
2000; Mazur et al., 2002]. The detection of soliton 
component and determination of its properties de-
mands elaboration of special nonlinear methods of 
signal analysis. Standard methods of spectral analysis 
based on the Fourier transform (FT) fit well the detec-
tion of linear waves, but they are not very effective for 
the examination of highly structured space plasma 
turbulence.  

The simplest approach is based on the determina-
tion of the statistical relationships between amplitudes, 
duration, velocity, etc. of the observed signal ensem-
ble. Then, the comparison with the theoretically pre-
dicted relationships for a given soliton class may be 
used as a simple observational test for its identifica-
tion [Guglielmi et al., 1978].  

 However, the above simple statistical method of 
the soliton identification requires an analysis of sub-
stantial number of signals under the same external 
conditions. The method described in this paper can be 
applied to a single event. The proposed method is 
based on the idea of Hada et al. [1993] who suggested 
to apply the scattering transform (ST) to a complex 
time series of analyzed data instead of FT. We have 
built an effective numerical algorithm to implement 
the soliton transform. Below we give a short descrip-
tion of this algorithm, comprising calculations of dis-

crete data of the scattering problem (otherwise, soliton 
parameters) and variation of spatial scale.  

 
Derivative nonlinear Schrödinger equation  

  
The derivative nonlinear Schrödinger (DNLS) equa-
tion 

2                         (1)     (| | ) 0t xx xb ib b b+ + =  
may describe the nonlinear circularly polarized Alfvén 
wave x zb b ib= + , propagating along x -axis. Multi-

soliton solution ( , )Nb x t  of the equation (1) can be 
derived via elementary functions, although even under 

2 N = the relevant formula is too cumbersome. One-
soliton solution has the form:  
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i.e. one-soliton solution is determined by two inde-
pendent real parameters ,r iλ λ . 

When the complex eigenvalue r iiλ λ λ= +  has 
been determined all the physical parameters of 
searched soliton can be found. The found eigenvalues 
enable one to determine with explicit formulas the 
“physical” parameters of solitons, such as amplitude 
A , non-linear component of velocity V , characteris-

tic length L  and duration T : 
2 8(| | ),  4 ,    A Vr rλ λ λ= + =  

-1 -1(4 ) ,  (16 | | ) .L Ti r iλ λ λ= =  
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Integral reflection coefficient as a soliton de-
tector 

 
We demonstrate the proposed method using as an 
example DNLS solitons. The exact solution of the 
DNLS equation (1) may be reduced to the solution of 
linear problem with a well-elaborated algorithm. This 
algorithm is based on the solution of the direct and 
inverse scattering problems for the auxiliary linear 
system of Kaup and Newell  [1978]:  

       1 1 2
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Discrete data of scattering are a finite set of com-
plex eigenvalues, located in an upper half-plane, to-
gether with a set of complex phases of solitons. The 
method of their calculation is relied upon the fact that 
the discrete eigenvalues are zeros of the diagonal ele-
ment a  of the scattering matrix, considered as a func-
tion of complex spectral parameter λ . The following 
two-stage algorithm for the effective numerical calcu-
lations has been elaborated. At the first stage, the 
points on the real axis where Re ( )a λ  tends to zero 
are to be found. Then, starting from the points ob-
tained, the contours of zero level of Re ( )a λ  are 
calculated in the upper half-plane. Calculations con-
tinue until Im ( )a λ  along such a contour tends to 
zero as well.  

As a detector of DNLS solitons the integral reflec-
tion coefficient is used, that drastically decreases 
(theoretically — to zero) when an analyzed signal is 
close to the N -soliton profile. The integral reflection 
coefficient R  is determined as an integral of absolute 
value of the reflection coefficient ( )r λ  over a real 
axis, that is  

| ( ) | .R r dλ λ
∞

−∞

= ∫  

 
For N-soliton spatial profile, which is a reflec-

tionless potential, this value is exactly zero, whereas it 
is positive for any other distributions. Any changes in 
the spatial scale (that is changes of step δ  over x  in 
a numerical values of the profile under study) results 
in a change of the value R . For an exact N-soliton 
profile, these variations of scale yield a deep zero 
minimum of the function ( )R δ  for a correct scale δ . 
Thus, the integral reflection coefficient is very sensi-
tive to a change of the linear scale. Therefore, if the 
analysis of an experimentally detected spatial profile 
with the use of the scale variation method gives a 
dependence ( )R δ  with an evident minimum, this 
may imply an occurrence of a substantial soliton com-
ponent in this disturbance. As a by-product of this 
method, a correct value of the scale  minδ δ=  is de-
termined. Using the found value of δ  one can calcu-
late the discrete data of the scattering problem and 
retrieve a pure soliton part of the disturbance under 
study, using the known formulas for the N-soliton 
solution.  

 
Discrimination of solitons and "linear" wave 
packets 

  
Here we examine how well the proposed method 

of time series analysis can discriminate between an 
actual soliton and similar to it isolated wave packet. 
As a test we use the soliton ( ; )solb x λ  with eigen-
value =0.3+0.5i λ . The result of calculation (curve 
A in Fig.1) shows that the dependence R(δ) has a deep 
minimum, reaching zero under the same sampling step 

Sδ δ=  as the raw function ( ; )solb x λ  was deter-
mined. In due course, the linear wave packet may be 
described by the imitating function of the following 
form  

2

0 1 2( ) exp[- ( - ) ][cos( - ) sin( - )], (3)imitb x x x iγ θ θ θ θ= +

where 0( - ).k x xθ =  This function depends on many  
parameters, which enabled us to choose a function 

( )imitb x  having nearly the same waveform as the 

exemplary solution ( ; )solb x λ . The waveforms of 

"soliton" ( ; )solb x λ  and "linear" ( )imitb x  functions 
are shown in Fig.2.  

The calculation of the integral reflection coeffi-
cient R(δ) for the function ( )imitb x  has provided the 
following result (Fig.1). The plot R(δ) for the soliton-
imitating signal (3) (curve B) is essentially different 
from the corresponding plot for actual soliton (curve 
A). Instead of deep near-zero minimum at Sδ δ= , 

the coefficient R(δ) has at all δ of the order of Sδ  a 
Fig. 1. Integrated reflection coefficient ( )R δ for 
the exact one-soliton profile (1) (A) and for its imi-
tation with the localized wave packet (2) (B). 
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plateau at rather high level. Thus, the proposed charac-
teristics R(δ) has turned out to be very sensitive to a 
signal deviation from a soliton waveform.  

 
 

 
 
 
 

 
 
 
 
 
 

The high-frequency noise influence on the soli-
ton detector 

  
To validate a robustness of the proposed technique to 
the possible occurrence of high-frequency noise in 
data, this method has been applied to the testing signal  

( ) ( ) ( )sol pertb x b x b x= + , consisting of a soliton 

( )solb x  with parameter =0.3+0.5iλ , and high-fre-

quency interference signal 2( ) i x
pertb x e πα=  with 

amplitude =0.3α . The estimated reflection coeffi-
cient R(δ) for this “noisy” soliton is shown in Fig.3 

(curve B). The comparison with pure soliton (curve A) 
shows that despite the noise occurrence the coefficient 
R(δ) still has a clear minimum in the vicinity of 

Sδ δ= .  

The calculation of eigenvalue λ  for a "noisy" 
soliton has been made for the sampling scale Sδ  with 
the use of the algorithm described above. Fig.4 shows 
the zero-level contours 1Re ( ) 0s λ =  and 

1Im ( ) 0s λ = ; their intersection is the searched com-
plex eigenvalue λ. For a relatively weak noise ampli-
tude α =0.3 a perturbed eigenvalue does not shift far 
from a nominal eigenvalue for pure soliton ( )solb x  
(marked by a cross).  

 
Possible applications and further studies 

 
A similar approach after a minor modification can be 
applied for the detection of solitons described by other 
integrable nonlinear equations. The method developed 
here can be applied, in principle, to any equation with 
soliton-like solutions.  

The application of the proposed technique to mod-
eling signals shows its superiority over the standard 
FT. Complicated FT spectra of a soliton ensemble are 
substantially simplified after the use of the soliton 
transform, based on ST. A wave envelope that seems 
complicated to the FT may be a superposition of just a 
few solitons.  

The suggested method is not limited by analysis of 
one-soliton profile b(x), but may be applied to the 
analysis of more complicated events with several in-
teracting solitons. The technique effectively discrimi-
nates a multisoliton solution (N=1-5) from a non-
soliton isolated disturbance (Gaussian packets).  
 
Conclusion 

 
Method to detect solitons and determine their parame-
ters and propagation velocities, based on the solution 
of the scattering problem has been considered. The 
method developed here can be applied, in principle, to 
any equation with soliton-like solutions. We elabo-
rated this technique for DNLS because this equation 
describes a wide range of non-linear phenomena in 
space plasma. As an example, we have constructed the 
algorithm of numerical solution of direct scattering 
problem for the linear system (2), associated in the 
inverse scattering techniques with the DNSL equation 
(1). The integral reflection coefficient has been used 
as a detector of the DNLS solitons, which steeply 
drops (theoretically — to zero) when an analyzed 
signal is close to the N-soliton waveform. 

Application of this technique to numerically simu-
lated signals showed that it is more efficient than stan-
dard Fourier transform and can be developed into a 
practical tool for the analysis of outputs from nonlin-
ear systems. The application of the proposed technique 

Fig. 2. Comparison of soliton ( ; )solb x λ  and 
"linear" signal ( )imitb x , which have been used 
for the calculation of integral reflection coeffi-

Fig. 3. Comparison of the integral reflection coef-
ficient R(δ) estimated for the “noisy” soliton (B) 
and “pure” soliton (A).  
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to modeling signals shows its superiority over the 
standard FT. The technique effectively discriminates 
N-soliton solution (N=1-5) from non-soliton isolated 
disturbances (Gaussian packets). A wave envelope 
that seems complicated to the FT may be a superposi-
tion of just a few solitons, easily retrieved with the 
proposed method. This approach seems promising for 
the analysis of nonlinear signals in space physics, 
often detected in the solar wind, magnetosheath, auro-
ral region, etc. This method enables one to determine 
using a single-point observations the basic parameters 
of soliton component of a disturbance, such as veloc-
ity, amplitude, duration, etc.  

  

−1 −0.8 −0.6 −0.4 −0.2 0 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Re λ

Im
 λ

Re  s
1
(λ)=0

Im  s
1
(λ)=0

 
 
 
 
 
 
 
 

Acknowledgements. Useful comments of E.N. Fe-
dorov are appreciated. This study is supported by the 
grant INTAS 05-1000008-7978.    

  
References 

 
Baumgärtel K., Soliton approach to magnetic holes. J. 

Geophys. Res., 104, NA12, 28295-28308, 1999. 
Hada T., R.J. Hamilton, C.F. Kennel. The soliton 

transform and a possible application to nonlinear 
Alfven waves in space, Geophys. Res. Lett.,  20, 
779-782, 1993.  

Kaup D.J., A.J. Newell. An exact solution for a de-
rivative nonlinear Schrödinger equation. J. Math. 
Phys., 19, 798-801, 1978. 

Lund F. Interpretation of the precursor to the 1960 
Great Chilean Earthquake as a seismic solitary 
wave,  Pure Appl. Geophys., 121, 1, 17-26, 1983. 

Ovenden C.R., Shah N.A., Schwartz S.J., Alfven 
solitons in solar wind, J. Geophys. Res., 88, NA8, 
6095-6101, 1983. 

Patel V.L., Dasgupta B. Theory and observations of 
Alfven solitons in the finite beta magnetospheric 
plasma, Physica, D27, N3, 387-398, 1987. 

Petviashvili V.I.,  Pokhotelov  O.A., Solitary Waves in 
Plasmas and in the Atmosphere, London, Gordon 
and Breach Science Publishers, 1992. 

Shen M.C., Solitary waves in an atmosphere with 
arbitrary winds and density profiles, Phys. Fluids, 
9, N10, 1966. 

Guglielmi А.V., Bondarenko N.М., Repin V.N. Soli-
tary waves in near-Earth environment, Doklady 
AN SSSR, 240, № 1, 47-50, 1978. 

Gurevich А.V., Маzur N.G., Zybin К.P., Statistical 
limit in an completely integrable system under de-
terministic initial conditions, ZhETF, 117, N4, 
797-817, 2000.  

Маzur N.G., Georgdzaev V.V., Gurevich А.V., Zybin 
К.P., Statistical limit in the nonlinear Schrödinger 
equation solution under deterministic initial condi-
tions, ZhETF, 121, N4, 971-990, 2002. 

Pelinovsky Е.N., Romanova N.N., Nonlinear station-
ary waves in the atmosphere, Izvestija AN SSSR 
(Physics of atmosphere and ocean), 13, №11, 
1977.  
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