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Abstract 
A theory of Alfven resonance is developed for a magnetospheric model with a dipole magnetic field and rotating 
plasma. An equation is derived that describes a spatial structure of Alfven oscillations driven by a monochromatic 
fast magnetosonic wave. The structure of the disturbed magnetic field of resonant Alfven waves excited at different 
magnetic shells is investigated. It is shown that the phase of the azimuthal magnetic component changes non-
monotonically near the resonant shell. This effect occurs only for the fundamental harmonic of standing Alfven 
waves. In the neighborhood of the magnetopause, where the velocity of plasma rotation rises abruptly, the scale of 
the phase change is comparable to the resonant peak width. 

 
Introduction 

A theory of Alfven resonance in the 
magnetospheric physics was formulated at first for 
simple magnetized plasma configurations in [1,2]. 
They showed that resonant interaction between 
Alfven waves and fast magnetosonic waves occurs in 
plasma that is inhomogeneous on one of the 
transverse (with respect to the magnetic field) 
coordinates. 

For two-dimensionally inhomogeneous plasma in 
the model with dipole magnetic field the problem of 
Alfven resonance was developed in [3-5]. A fast 
magnetosonic wave was demonstrated to be able to 
excite the Alfven oscillation at the resonant magnetic 
shell. The position of the shell depends on the driving 
frequency and is determined by the equality of the 
Alfven eigenfrequency and frequency of a fast 
magnetosonic wave. Along field lines resonant 
oscillations are standing waves between 
magnetoconjugate ionospheres. Across the magnetic 
shells the amplitude distribution of Alfven 
oscillations is a typical resonant one. 

It was shown in [6] that fast magnetosonic waves 
can also excite another branch of MHD waves - slow 
magnetosonic oscillations. Frequencies of slow 
magnetosonic and Alfven waves differ considerably. 
That is why effective interaction between these 
branches is impossible. Slow magnetosonic waves 
cannot be observed on the ground or close to the 
ionosphere because their magnitude steeply decreases 
along the field lines from the equatorial plane to the 
ionosphere. Moreover, in the real magnetosphere 
slow magnetosonic oscillations are overdamped. 

In this paper we investigate the spatial structure of 
resonant Alfven waves excited by a monochromatic 
fast magnetosonic wave in a model dipole 
magnetosphere with moving plasma. 

 
Environment model and main equation 

In order to take into account the plasma motion, 
we use a self-consistent model of the magnetosphere 
with a dipole magnetic field and plasma rotating in 
the azimuthal direction [7]. We introduce an 
orthogonal curvilinear coordinate system attached to 

the magnetic field lines. The 3x  coordinate is 
directed along field lines, the 1x  coordinate is 
orthogonal to magnetic shells, and the 2x  coordinate 
points in the azimuthal direction so as to complete a 
right-handed system (Fig. 1). 

To examine the structure of resonant Alfven 
oscillations we will use the system of ideal MHD 
equations: 

,0),(

],[

],)[(
4
1

=
ρ

ρ−∇=
∂
ρ∂

××∇=
∂
∂

××∇
π

+−∇=

γ

P
dt
d

t

t

P
dt
d

v

BvB

BBv

 (1) 

where B  is the magnetic field, v  is plasma 
velocity, ρ  and P  are the plasma density and 
pressure respectively, γ  is the adiabatic index, and 

)(// ∇+∂∂≡ vtdtd  represents the Lagrangian 
derivative in moving plasma. In a steady state 
( 0/ ≡∂∂ t ), the set of equations (1) describes the 
distribution of the plasma equilibrium parameters 

000  , , PvB  and 0ρ . 

Figure 1. Curved orthogonal coordinates 
) , ,( 321 xxx , related to magnetic filed lines and 

non-orthogonal coordinates ) , ,( θϕa  used in 
numerical study. 
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The disturbed electric field of the oscillations can 
be represented as ψE ×∇+ϕ−∇= , where the scalar 
potential ϕ  corresponds to Alfvén waves and the 
vector potential ),0,0( SF ψ+ψ=ψ=ψ  — to 
magnetosonic oscillations, and Fψ  and Sψ  describes 
fast and slow magnetosonic oscillations respectively. 
Frequencies of Alfven waves are two orders of value 
higher than those of slow magnetosonic oscillations 
[6], therefore fast magnetosonic waves that are 
drivers for Alfvén oscillations cannot excite slow 
magnetosonic waves. Since Alfvén resonance is 
being considered, we will take in the further 
calculations 0=ψ S .  

After linearization of the set (1) relative to the 
smaller disturbances )exp(~ 2

2 tixik ω−  due to the 
MHD oscillations of plasma, we obtain:  

( )( ) ,ˆˆlnˆ 2
2111 ψ=ϕ−ϕω∇−ϕ∇∇ SPT LLkL  (2) 

where Ω−ω=ω m  is the oscillation frequency 
modified by Doppler effect, )( 1xΩ=Ω  is the 
angular speed of the plasma rotation, m  is azimuthal 
wave number, 
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The right-hand part of (2) is the driver of resonant 

Alfven oscillations — the field of monochromatic 
fast magnetosonic wave. The expression for the right-
hand operator SL̂  and the equation describing fast 
magnetosonic waves are rather unwieldy and are not 

presented here. In the following calculations we will 
treat ψ  as known. 

 
Spatial structure of resonant Alfvén waves 

We will consider the field-aligned structure of 
several first harmonics of standing Alfven waves. 
Typical field-aligned wave length of such oscillations 
is of the order of the field line length. The typical 
scale of resonant Alfven oscillations across magnetic 
shells is much smaller than their longitudinal wave 
length: ϕϕ∇>>ϕϕ∇ // 31  [8]. Therefore, a 
solution to (2) may be sought using the method of 
different scales, representing the potential in the form 

),exp(),()( 2
2

311 tixikxxTxV ω−=ϕ  (3) 

where the function )( 1xV  describes the small-

scale transverse structure of oscillations along the 1x  
coordinate  in the main order, whereas the function 

),( 31 xxT  describes the oscillation structure along 
geomagnetic field lines. 

Substituting (3) into (2), in the main order of 
perturbation theory we obtain longitudinal equation 

0)(ˆ =Ω NNT TL . (4) 
Boundary conditions on the ionosphere in the 

same approximation have a homogeneous form: 
0)( 3 =±xTN . The solutions of (4) are eigenfunctions 

NT  and corresponding eigenvalues NΩ=ω  
( ... 3 ,2 ,1=N  is the longitudinal wave number). 
Fig. 2 presents the structure of the first three 
longitudinal harmonics of resonant Alfvén waves. 
Fig. 3 shows the distribution of their 
eigenfrequencies πΩ= 2/NNf  across the magnetic 

shells. The position 1
TNx  of magnetic shells where 

Figure 2. The structure of longitudinal harmonics 
3,2,1=N  of resonant Alfvén oscillations at the 

shell 6=L  ( ERaL /=  — the McIlwain 
parameter of the magnetic shell with the 
equatorial radius a , ER  — the Earth radius). 

Figure 3. Distribution across the magnetic shells 
of the eigenfrequencies of resonant Alfvén waves 
for longitudinal harmonics 71−=N  (thick 
lines) and of the Doppler-shifted frequency of a 
monochromatic fast magnetosonic wave with 
azimuthal wave numbers 5,2 ±±=m  (thin lines).
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fast magnetosonic waves with frequency ω  can 
excite resonant Alfvén oscillations is determined by  

)()( 11
TNTNN xmx Ω−ω=Ω . 

In the next order of the disturbance theory (2) 
leads to an equation determining the structure of 
resonant Alfven oscillations across the magnetic 
shells: 
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where Nγ  is the decrement due to the dissipation 
of resonant waves in the ionosphere, 
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Nµ  defines the magnitude of oscillations excited 
by a monochromatic fast magnetosonic wave. In the 
vicinity of the resonant shell the eigenfrequency can 
be presented in the form 
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where NNNL Ω∇Ω= 1/ . 
Introducing a dimensionless transverse coordinate 

NTN Lxx /)( 11 −=ξ  we can present (5) in the form 
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where 
NN Ωγ=ε / , ( ) NNN Lkd ΩΩ∇−= /12  

NNNN Lk Ωα=κ /2 , NNNN αΩα=β /2 . 
Using Fourier transformation we find a solution 

to (6) in the form: 
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The magnetic field in the vicinity of the 
resonance shell 

When the spatial structure of the potential ϕ  is 
found, the expressions for the physical components 
of the disturbed magnetic field can be obtained as 
follows: 
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In the neighborhood of the resonant shell ( 0=ξ ) 
function NV  has a logarithmic peculiarity while the 

derivative NV1∇  has a stronger peculiarity 1~ −ξ . 
Thus, the resonant Alfvén oscillations have toroidal 
polarization ( 12 BB >> ). 

Now we consider the behavior of the phase of the 
azimuthal component of the magnetic field 

)exp( yyy iBB α= . It is known that the phase of 
azimuthal component of resonant Alfvén waves 
monotonically changes in the neighborhood of 
resonant magnetic shell and the phase shift is 
approximately π . Fig. 4 shows the transverse 
distribution of the phase yα  when the resonance 
condition is fulfilled at the shells 

11;5,10;10;5,9;9=L . The phase yα  changes non-
monotonically near the shell 10=L . It should be 
noted that the phase of the component xB  does not 
have that feature. 

In the model magnetosphere we employed the 
shell 10=L  coincides with the magnetopause. In its 
vicinity the angular speed of plasma rotation changes 
rapidly and at the magnetopause the gradient of speed 

)( 1
1 xΩ∇  is maximal. At the magnetic shell 4=L  

(plasmopause) where the angular speed does not  
increase as steeply the phase of the component yB  
changes monotonically. Therefore it can be supposed 
that the structure of the resonant Alfvén oscillations 

Figure 4. The behavior of the phase yα of 
azimuthal magnetic component when the 
resonance condition is fulfilled at different shells. 
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depends greatly on the value of the angular speed 
gradient at the resonant magnetic shell. 

Fig. 5a represents the dependence of the phase 
yα  on azimuthal wave number m  for the first 

longitudinal harmonic ( 1=N ). The scale of non-
monotonical changes decreases considerably while 

m  rises. Fig. 5b shows how the phase yα  changes 
when the number N  increases. It is evident that the 
behavior of yα  becomes monotonical again for the 
harmonics 2≥N .  
 
Conclusion 

The main results of this study may be summarized 
as follows. 

1. The equation is derived that describes the 
structure of resonant Alfven waves in a model dipole 
magnetosphere with rotating plasma.  

2. Solutions are found to the equations defining 
the structure of Alfven oscillations along magnetic 
field lines and across magnetic shells. 

3. The magnetic field structure of Alfven waves is 
investigated in the neighborhood of resonant shell for 
different frequencies of an impinging fast 
magnetosonic wave. It is shown that the phase of the 
azimuthal magnetic component of the fundamental 
longitudinal harmonic changes non-monotonically if 
the resonance condition is fulfilled in a region where 
the angular velocity gradient is maximal. 
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Figure 5. The dependence of the phase of the 
azimuthal magnetic component of resonant 
Alfvén waves (a) on the azimuthal wave number 
m  for 1=N  and (b) on the number of 
longitudinal harmonic N  for 7=m . The dashed 
line corresponds to a model with stationary 
plasma ( 0=Ω ). 


