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Abstract. A nonlinear theory of large-amplitude magnetosonic (MS) waves in high-β  space plasmas is revisited. 
It is shown that depending on the shape of the equilibrium ion distribution function these waves can exist in the form 
of "bright" or "dark" solitons in which the magnetic field is increased or decreased relative to the background 
magnetic field. The basic parameter that controls the shape of the nonlinear structure is the wave dispersion which 
can be either positive or negative. A general dispersion relation for MS waves propagating perpendicular to the 
external magnetic field in a plasma with an arbitrary distribution function is derived. The new dispersion relation 
allows the treatment of general plasma equilibria such as the Dory-Guest-Harris (DHG) or Kennel-Ashour-Abdalla 
(KA) loss cone equilibria, as well as distributions with power law velocity dependence that are modelled by the 
family of κ -distributions. It is shown that in bi-Maxwellian plasma the dispersion is negative, i.e. the phase 
velocity decreases with the increase in the wave number and thus the solitary solution in this case has the form of 
the "bright" solitons with the magnetic field increased. On the contrary in non-Maxwellian plasmas such as the ring-
type distribution or DGH plasmas this solution may have the form of magnetic hole. The results of similar 
investigations based on nonlinear Hall-MHD equations are reviewed.  
 
1. Introduction. The magnetosonic (MS) waves are frequently observed in the upstream and downstream regime 
of the terrestrial bow shock [Balikhin et al., 1997]. They are inherent to the magnetosheath, which is a turbulent 
layer formed downstream of the bow shock in the front of the magnetopause. The magnetosheath contains a large 
number of MS solitary structures of various shapes. Some of them belong to the class of magnetically rarefactive 
("dark") solitons propagating at large angles to the ambient magnetic field whereas others are the waves with the 
magnetic field increased, the so-called "bright" solitons or magnetic holes [e.g.,  Lucek et al., 2005]. The analytical 
and numerical study of these nonlinear structures has been the subject of a great deal of research in recent years 
[e.g., Baumgartel, 1999; Baumgartel et al., 2005]. Using a nonlinear Hall-MHD model of the MS solitons in the 
high-β  space plasmas it was assumed that the ion inertia can serve as the dominant dispersion effect that can 
prevent the MS structures from the wave breaking. Recently Pokhotelov et al. [2005a] noted that the Hall-MHD 
soliton model has a limited application and cannot be directly applied to high-β  plasmas unless the effects due to 
magnetic viscosity or finite ion Larmor radius effects (FLR) are taken into account. For quasi-perpendicular 
propagation the FLR effects always prevail. The inconsistency between the exact kinetic treatment and the results of 
Hall-MHD theory in high-β   plasmas has been also noticed by Krauss-Varban et al. [1994].      The dispersion of 
the MS waves propagating at large angle to the ambient magnetic field has been extensively discussed since the 
work of Kennel and Sagdeev [1967] where it was found that MS solitons in high-β   Maxwellian plasma are 
rarefactive, i.e. represent the "dark solitons". This analysis has been further modified by Macmahon [1968] who 
found that MS solitons belong to the variety of "bright" solitons. A further discussion of this problem was given by  
Mikhailovskii and Smolyakov [1985]. Different types of MS wave forms were found in the foreshock regions as 
well as various ion populations: beam, intermediate and diffuse ions [e.g., Gosling et al., 1978]. The latter result 
from either the Fermi or the shock-drift acceleration mechanisms at the bow shock. In the presence of such 
distributions waves can be driven by the  ion/ion beam [Gary, 1991] or halo [Pokhotelov et al., 2005b] instabilities. 
The present paper provides the fully kinetic analyses of the MS waves in high-β  plasma, taking into consideration 
both non-Maxwellian distributions and finite amplitude effects. Such a theory can give an answer to the question 
under which conditions the MS waves can propagate in space plasmas in the form of "bright" or "dark" solitons 
which can be registered by satellite magnetometers.   
 
2. Linear MS dispersion relation in non-Maxwellian plasmas 
We consider the case of utmost importance when MS waves propagate perpendicular to the external magnetic field. 
Then the MS dispersion relation for the arbitrary particle distribution functions is reduced to  
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Here Av  is Alfven velocity, ρ  is the plasma mass density, iρ  is the ion Larmor radius, ciω is the ion cyclotron 

frequency and parameter λ  is given by 
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where W is the ion energy. Parameter λ  deserves a special attention since it plays a central role in the theory of MS 
solitons. Substitution (2)-(3) with (1) gives the MS dispersion relation 
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where 2/1
AA )1(vV ⊥β+=  stands for the generalized Alfven velocity which incorporates the high-β  effect and d 

is the dispersion length given by 
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From Eq. (6) it follows that the square of the dispersion length can be either positive or negative depending on the 
shape of the ion distribution function which is defined by the sign of the last term in the nominator of Eq. (6). The 
MS dispersion is negative if the parameter λ  is relatively small, 12/7<λ .  This corresponds to the necessary 
(but not sufficient) condition of existence of negative dispersion. In the opposite case the dispersion is positive. In 
this connection a few comments are in order. First, for canonical Maxwellian distribution function 1=λ  and 

0d 2 > . Thus in such plasma the MS dispersion is negative as it was demonstrated by Macmahon [1968] who used 
simplyfied fluid considerations. As it will be shown below this may result in the appearence of "bright" solitons in 
high-β  plasmas. The same is true for bi-Maxwellian distribution for which the parameter λ  also equals unity 

and 2d  is given by 
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Thus, even in non-equilibrium plasmas such as bi-Maxwellian plasmas the dispersion of MS waves is still negative, 
i.e. the phase velocity decreases with the increase in the wave number. 
     A positive dispersion may appear in a plasma with the ion ring-type distribution )vv(F 0i ⊥⊥ −δ∝ , where 

0v⊥  is the ion "ring" velocity. For such distribution 2/1=λ  and the necessary condition for the reversal of the 

sign of 2d is satisfied. Such distribution functions were systematically observed when MS waves were detected in 
the Earth's magnetosphere on board the GEOS 1 and 2 satellites. The ring type ion distributions can also be formed 
during the pick up processes when neutral atoms are injected from comets or the interstellar medium into solar wind 
and get trapped by solar wind plasma. 
      It should be noted that in majority of cases the measured particle distributions in the near-Earth environment 
considerably deviate from the bi-Maxwellian or ring type shape. They are better fitted by generalized loss-cone 
Dory-Guest-Harris distribution [e.g., Leubner and Schupfer, 2000]   
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where ⊥T||  vand Tv  are the thermal ion speeds parallel and perpendicular to the magnetic field, the spectral index 

κ  and loss-cone index l  the condition 2/5l +>κ . The mixed loss-cone high-energy-tail distribution (8) 
reduces for 0l =  to the κ -distribution, for ∞→κ to the Dory-Guest-Harris type distribution and for ∞→κ  
and 1=l   to the bi-Maxwellian distribution. Using Eqs. (4) and (8) one finds easily the parameter λ  which is                                 

)2/5)(1/()2/3)(2/1( −−+−−+= llll κκλ . A close inspection of this expression shows that presence of 
the high-energy tails does not lead to the reversal of the sign of the square of the MS wave dispersion length. On the 
other hand the loss-cone effects do it if the loss cone index is sufficiently large. For example, in the limiting case 

∞→κ  the loss cone index should be greater than 5. The general case that demonstrates the necessary conditions 
for the existence of the reversal of the sign of the wave dispersion for the arbitrary l and κ is depicted in Figure 
1(Left). One sees that larger l are in favour of positive dispersion whereas the smaller κ plays an opposite role. 
     Finally let us discuss one more ion distribution function that might be promising for the reversal of the sign of the 
MS wave dispersion. This is a partially filled loss cone distribution of Ashour-Abdalla and Kennel [1978], the so-
called KA distribution discussed by Pokhotelov et al. [2002] in connection with the mirror instability    
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where parameter η is restricted, 10 ≤η≤ ,  and ς  takes positive values. It takes care of the formation of the loss 
cone and the degree of loss cone filling. In particular, the bi-Maxwellian is reproduced for either 1=η   or 0=ς .     

Using  Eq. (9) one easily finds 22 )]1)(1()][1)(1([ −+−+++−+= ςηηςςηηλ                                                                 

 
Fig. 1 Left –Plot of 12/7−λ  as a function of the loss cone index l  and parameter for generalized loss-cone Dory-
Guest-Harris distribution. On the right -  The same as in Fig. 1 but  for KA distribution function. 
 
One sees that in case of KA distribution function the necessary condition for the reversal of the sign of the MS 
dispersion is not attained. 
 
3.  MS solitons in non-Maxwellian plasmas 
The basic idea in deriving the model soliton-like equations is the reductive perturbation scheme of Korteweg and de 
Vries (KdV), who simplified general wave equations by expanding them in a perturbation theory expansion with  
nonlinear parameters and dispersion parameters being treated as small quantities of the same order of magnitudes 
[cf. Petviashvili and Pokhotelov, 1992]. Following this idea one can deduce the nonlinear terms independently 
neglecting the dispersion. The propagation of MS waves at large angle to the external magnetic field gives rise to a 
quadratic nonlinearity of the advective type (KdV type) associated with the vv ∇⋅  terms related to the ion inertia 
in the momentum equation. We now deduce a simplified form of this nonlinearity by disregarding the corrections 
due dispersion and diffraction. We start from the ion momentum equation P-BJv)vvt

ˆ( ⋅∇×=∇⋅+∂ρ . The 

pressure tensor is defined as jipp bbIP ˆˆ)(pˆˆ
|| ⊥⊥ −+=   where Î  is the unit dyadic, )||(⊥p  the parallel 

(perpendicular) plasma pressure and ib̂  the components of the unit vector B/B . Since we are interested here 
solely in calculation of nonlinear corrections the terms related to FLR effects that corresponds to the collisionless 
magnetic viscosity in Eq. (12) are neglected. In this case the MS wave exhibits solely the y-component of the 
electric field and the z-component of the magnetic field. Thus, in the absence of dispersion only the x-component of 
the ion velocity survives and xv v≡ . Similarly, Eq. (12) shows that the only nonzero component of the electric 
current is the y-component given by ⊥

−− ∂+∂+∂= pBvvvBJ xxt
11 )(ρ . We note that the terms due to the 

pressure anisotropy do not contribute to the electric current in our approximation. Eq. (14) can be further simplified. 
First, we note that our plasma is frozen-in the magnetic field and thus 00 // BB ρρ = . Moreover, in the course of 
calculation of the second term on the right-hand side of Eq. (14) one can assume that plasma pressure varies 
adiabatically, i.e. const/ 2 =⊥ Bp .  This condition can be easily obtained from the perpendicular plasma pressure 
balance condition when the effects due to the thermal heat flux are neglected. The latter are of the same order as the 
dispersion corrections and thus vanish. Thus, one obtains bB)vvv(vBJ x0xt

2
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0z B/Bb δ=  is a dimensionless wave amplitude. Substitution of this expression into Ampere's law gives 
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velocity. Then, with the help of Faraday's law, we arrive to the condition zy BuE δ=  and thus )bb(uv 2−= . 
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duVA /)/1( 2/122−=κ . When dispersion is negative the MS structures are super-Alfvenic with the magnetic 
field increased ("bright" solitons). In the opposite case of positive dispersion they are sub-Alfvenic with the 
magnetic field decreased ("dark" solitons or magnetic holes). 
       
4. Discussion and conclusions 
The analysis presented above revealed the key role of FLR effects in the formation of solitary MS structures. It was 
shown that the shape of these structures is very sensitive to the details of the velocity space distribution. Contrary to 
previous statement that the ion inertia plays a major role in the formation of dispersive properties of MS waves in 
high-β  space plasmas, our analysis shows that this role ultimately belongs to the FLR effect. Depending on the 
details of the background distribution function the dispersion corrections produce either positive or negative 
frequency shift. For instance, in Maxwellian plasma the MS dispersion is negative, i.e. the wave phase velocity in 
this case decreases with the increase in the wave number whereas the non-Maxwellian effects may lead to the 
reversal of the dispersion frequency shift. All these features give quite a complex picture of nonlinear phenomena in 
space plasmas. The clarification of the conditions under which the "dark" or "bright" solitons arise in space plasma 
environments is clearly of utmost importance. Our analysis makes these conditions more accurate. In most space 
plasmas where collisions occur very rarely, the measured velocity distributions of charged particles frequently 
deviate substantially from the canonical Maxwellian distributions. The simplest nonequilibrium distribution is 
generally assumed to be the bi-Maxwellian or kappa distributions (or generalized Lorenzian) where the kappa index 
determines the slope of their suprathermal energy distribution. The larger the value of kappa the lesser the excess of 
suprathermal particles. It was shown that for all these distributions the MS dispersion is negative and thus in such 
plasmas the solitary structures should represent the "bright" solitons with the magnetic field increased inside the 
structure. However, in some specific plasmas where the loss cone effects may play an essential role one should 
expect the appearance of the reversal of the sign of the dispersion frequency shift. This may result in the appearance 
of "dark" solitons with the magnetic field increased inside the structure. Similar phenomena can be observed in the 
pick up processes similar to those observed in the vicinity of comets. The model developed in this paper still 
remains oversimplified. For example, it is so far restricted by finite but small amplitudes of the solitons when the 
KdV expansion provides a useful guide for construction of nonlinear equations. We note that a detailed comparison 
of theoretical results with satellite observations is, however, outside the scope of the present study the intention of 
which is to provide a deeper insight into physics of nonlinear dynamics of MS waves in high-β  plasmas.  
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