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Abstract. The theory of ion-cyclotron type modes accounting for the collionless magnetic viscosity in high-β  
Maxwellian space plasmas is developed. A comparison of the kinetic results with those obtained in the framework 
of Hall-MHD is carried out. It is shown that in order to coincide with the fully kinetic treatment the Hall-MHD 
equations must be supplemented with terms responsible for the effect due to the collisionless magnetic viscosity. 
This effect was not included in the previous analyses. This in turn leads to the modification of  corresponding 
nonlinear equation that describes nonlinear dynamics of ion-cyclotron waves. 
 
1. Introduction  
 
The ion-cyclotron waves are the most important modes in high-β  space plasmas. The mathematical description and 
identification of such waves in satellite data has been the subject of a great deal of research in  the last four decades  
[e.g., Barnes, 1966; Formisano and Kennel, 1969; Foote and Kulsrud, 1979;  Gary, 1986, 1999; Leamon et al., 
1998a,b, 1999, 2000; Stawicki et al., 2001;  Krauss-Varban et al., 1994, 1996; Gary and Nishimura, 2004; Gary and 
Borovsky, 2004]. All these studies were mainly based on numerical analysis of the coupled Vlasov-Maxwell system 
of equations. More then a decade ago Krauss-Varban et al. [1994] raised an interesting question whether the fully 
kinetic treatment of ion-cyclotron waves in high-β  plasmas coincided with the results of a simpler description 
based on Hall magnetohydrodynamics (Hall-MHD). The fluid description is usually simpler than their kinetic 
counterparts. All terms in the fluid equations have a definite physical sense and the mode properties are well 
calculated, except for the case when waves are highly damped due to the wave-particle resonant interaction. In this 
respect it is of interest to investigate whether there is a relevant fluid approach that can be used for calculation of 
hydromagnetic wave dispersion in high-β  plasmas.  
 
2. Kinetic description 
 
We investigate the ion-cyclotron waves in an electron proton plasma considering that all fluctuating quantities vary 
in time and space as )itiexp( rk ⋅+ω− , where ω  and k  are the wave frequency and the wave vector, 

respectively. We assume that zxk ˆˆ ||kk += ⊥ , x̂  and ẑ  are the unit vectors perpendicular and parallel to the 

external magnetic field 0B , ||k and k ⊥  are the perpendicular and parallel components of the wave vector. For the 

case of the quasi-parallel  propagation, 222
||

2 // cikk ωω<<⊥ , the dispersion relation of the ion-cyclotron waves 

takes the form                                                                                                                                              

./)()/(/ ||
2222

|| ωωςωωω ciTiciA Zvkvk ±= ±                                                                                     (1) 

Here ici meB /0=ω  is the ion cyclotron frequency, e  and im  the ion (proton) charge and mass, respectively, 
2/1

000 )/( iA mnBv µ=  the Alfvén velocity, 0µ  the permeability of free space, 0n  the equilibrium particle 

number density, 2/1)/2( eeTe mTv =  and 2/1)/2( iiTi mTv =  the electron and ion thermal velocities, eT  and iT  

the electron and ion temperature, respectively, em  the electron mass, Tici vk||/)( ωως ±=±  the ion cyclotron 

resonance factor, and )( ±ςZ  the plasma dispersion function (the Kramp’s function). Eq. (1) yields the dispersion 
relation for the ion-cyclotron waves, ±  sign corresponds to the right-hand polarized magnetosonic-whistler and 
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left-hand circularly polarized Alfvén-cyclotron modes. Using the asymptotics of the Z  function at large argument, 
one reduces Eq. (1) to 

                                   ( ) ( )[ ] 2/13
|| /)2/(/1/1/

−
±±±= ciiciciAvk ωωβωωωωω ,                   (2) 

where 2
000 /2 BTn ii µβ =  is the ion plasma beta. In the low-frequency limit, ciωω << , Eq. (2) reduces to  

                                                             ( )[ ] ./2/11/ 2/1
|| ciiAvk ωωβω +±≈                                     (3) 

In the limiting case of very large ion betas, 1>>iβ , this dispersion relation has been deduced  by Foote and 

Kulsrud [1979]. The damping rate ±γ  of the ion-cyclotron modes can be expressed in terms of the cyclotron 

resonance factor ±ς , i.e. 

                                                      ),exp()2/(/ 22/1
±±± −−≈ ςςπωγ ci                                          (4) 

where ( )[ ] ./)2/(/1)/(
2/132/1

ciicicii ωωβωωωωβς ±±≈ −
±  

     Figs. 1-3 show the plots of normalized ion-cyclotron wave number and damping rate as a function of normalized 
frequency calculated with the help of  Eqs. (2) – (4). To compare our analytical results with previous analyses we 
have plotted similar curves obtained in numerical simulations of the coupled Vlasov-Maxwell system of equations  
[Barnes, 1966; Gary, 1999; Gary and Borovsky, 2004; Krauss-Varban et al., 1994; Stawicki et al., 2001].  One sees 
that both results are in rather a good agreement. 

 
Fig. 1a (on the left). The Alfvén-cyclotron wave number normalized to the ion inertial length picky ω/||=  as 

function of the dimensionless wave frequency cix ωω /= . Solid and dashed curves correspond to  1.0=iβ  and 

1=iβ , respectively. Dotted and dash-dotted curves are the results of numerical simulations  of  Stawicki et al. 

(2001) carried out for  the same values of iβ . Fig. 1b (on the right). The same as in Fig. 1a but for a normalized 

Alfvén-cyclotron wave damping rate ci/y ωγ= − . 

 
Fig. 2a (on the left). The Alfvén-cyclotron wave number normalized to the ion inertial length picky ω/||=  as a 

function of  cix ωω /= . Fig. 2b (on the right). The same as in Fig. 2a but for a normalized Alfvén-cyclotron 

damping rate ci/y ωγ= − . Solid and dashed curves correspond to 5=iβ  or 10=iβ , respectively. 
 
 Figs. 1b and 2b show that the frequency range of the weak damping of Alfvén-cyclotron waves is relatively narrow 
and it decreases with the increase in iβ . The transition from weak to strong damping starts abruptly with the 

increase of  ω  or ||k .  



Properties of nonlinear low-frequency waves in high-β  space plasmas: Kinetic and fluid description 

 

158 

 
Fig. 3a (on the left). The magnetosonic-whistler wave number as a function of  dimensionless frequency.  Fig. 3b 
(on the right) The normalized growth rate ci/y ωγ= + of the magnetosonic-whistler waves as a function of  

dimensionless frequency.  Solid, dotted and dashed curves correspond to 1=iβ , 5=iβ  and 10=iβ , 
respectively.  
One sees that magnetosonic-whistler waves possess  a weak damping and propagate in a relatively wide range of the 
wave frequencies. The maximum damping in plasma with 5=iβ  or 10=iβ  is attained at ciωω )32( −≈ . 
 
3. Hydrodynamic description  
 
Now we study the ion-cyclotron waves in high-β  collisionless plasmas in the framework of two-fluid MHD. To 
describe the wave dispersion in such plasma we make use of Braginskii’s type hydrodynamic equations. The first of 
them is the particle continuity equation, ,0)n(t/n =⋅∇+∂∂ ααα v another is the particle momentum equation 

)]([ˆ/ BvEv ×+=⋅∇+∇+ ααααααα π nqpdtdnm and finally, the equation of the state is .γαα Knp =  

Here αn , αv  and αp  are the particle number density, velocity and pressure of the α th species. The subscript α  

takes the value i  or e  for the ions and electrons, αm  and αq  the particle mass and charge, respectively, E  and 

B  the electric and magnetic fields, ∇⋅+∂∂= vtdtd //  the convective time derivative, π̂  is the collisionless 
magnetic viscosity tensor, K  the constant value and γ  the ratio of specific heats. We neglect the electron inertia 
and magnetic viscosity in the electron momentum equation. The components of  the ion magnetic viscosity tensor 
π̂  are xzciiizyyzciiizx vTnvTn ∂=∂−= )/(ˆ,)/(ˆ ωπωπ , z/z ∂∂≡∂ . We investigate the waves propagating 

along the ambient magnetic field zB ˆ||0  in the low-frequency, cidtd ω<</ , and long-wavelength 

approximation, considering that 1//1 <<∂∂≈= − zdtd ici ρωε , where 12/1)/2( −= ciiii mT ωρ  is the ion Larmor 
radius. A power series expansion of Eq. (11) on the parameter ε  yields the perpendicular ion velocity [cf. 
Onishchenko et al., 2001] ./ 0Bvz

III
E ⊥⊥ ++++= Bvvvvv π  Here 0/)ˆ( BE zEv ×=  is the electric drift 

velocity, zBB ˆ0B+= ⊥ , ⊥B  is the wave magnetic field, ẑ  is the unit vector along the ambient magnetic field 

0B , πωπ ˆˆ)( 1 ⋅∇×= − zv ciii nm   is the ion diamagnetic drift velocity due to the magnetic viscosity,  Iv is the ion 

polarization drift velocity Etci
I vzv ∂×= − ˆ1ω  and the correction to the ion polarization drift velocity is 

Ettci
I

tci
II vvzv 221 ˆ ∂−=∂×= −− ωω , where  tt ∂∂≡∂ / . Using these Eqs.  one can obtain that 

.)2/( 22
Ezzi vv ∂−= ρπ  One sees from this that IIv  and πv  are small values of an order of ε  relative to  the ion 

polarization velocity Iv . Considering the circularly polarized waves we introduce a complex 
function yx iAAA ±=±  for the arbitrary two-dimensional vector ),,,( ⊥⊥⊥⊥= jvEBA , where ⊥j  is the 

perpendicular electric current. Using these notations we write  Faraday’s and Ampere’s laws as  ±± ∂=∂ BiE tz 0µ  

and .000
2 =+∂−∂ ±±±
− jBiEc zt µµ  Then we decompose the electric current as NLDI jjjj ++=  where 

II en vj 0= , )(0 πvvj += IID en  and )/~( 00 nnven I
z

NL vBj +=  are the polarization, dispersion and 

nonlinear parts of the ion electric current, zv  and n~  are the parallel ion velocity and wave perturbation of the ion 
density. Neglecting nonlinear effects one obtains from here a dispersion relation (3). The term proportional to the 
ion beta iβ  in Eq. (3) is related to πv  and therefore cannot be obtained in the framework of the Hall-MHD. To 
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investigate nonlinear waves we introduce the spatial variable Vtz −=ς  and the slow time τ  and obtain 
2
0

2222
0 /||)()2/1(//~ BBcVVVvnn sz −== , where ii

2
s n/pc γ= . From here the derivative nonlinear 

Schrödinger (DNLS) equation [cf. Spangler and Sheerin, 1982] follows 
                                                         ,0)||( 22 =∂±∂+∂ ±±± BaBBibBi ςςςτ                                   (5) 

where ciTivVa ω2/)2/( 22 +=  and )(4/ 223
scVVb −= . It should be noted that Eq. (5) may be used solely 

when the phase velocity sA cvV >>≈ that corresponds to the applicability of  hydrodynamic description of 
collisionless plasmas.  
 
4. Discussion and conclusions  
 
The linear theory of uniform, magnetized, collisionless high-β  isotropic Maxwellian plasma has been used to the 
study dispersion and damping of the ion-cyclotron waves in an electron-proton plasma. A compact expression for 
the wave dispersion relation in the quasi-parallel approximation has been obtained. There has been expressed in 
terms of the tabulated plasma dispersion Z-function and thus it can be analysed numerically for different arguments. 
The dispersion relations and damping rates for the left- and right-hand polarized waves have been obtained for large 
arguments of the Z-function when damping is weak. In the low-frequency approximation and the limiting case of 
very large iβ  the dispersion relation (3) reduces to that  previously obtained  by Foote and Kulsrud [1979]. For the 

finite value of iβ  the term that describes the wave dispersion coincides with that in the nonlinear Schrödinger 
equation (DNLS) discussed by Mjølhus and Wyller [1988]. We showed that dispersion relation for the ion-cyclotron 
waves in the high-β  plasma can be obtained with the help of Braginskii type MHD where the term containing 

parameter iβ  arises from the collisionless magnetic viscosity and thus cannot be obtained in the framework of 
standard Hall-MHD. 
        Figs. 1a, b illustrate the dispersion and damping of the left-hand circularly polarized Alfvén-cyclotron waves 
due to the proton cyclotron resonance in a plasma with 1.0=iβ  and  1i =β . From Figs. 1a and 1b one sees that 

dispersion relation (2) and the growth rate (4) for the Alfvén-cyclotron modes in high-β  plasmas are in a good 
agreement with the numerical simulations [Gary, 1993; Gary and Borovsky, 2004; Krauss-Varban et al., 1994; 
Stawicki et al., 2001] who proposed the fit functions for the dispersion 

222
||

61.0
|| /)61.034.0(// piipici ckck ωβωωω ×+−=  and the growth rates 

)/exp()/(6.0/ 22
||

2
3

2
||

36.0 ckmck pi
m

piici ωωβωγ −−=  with 03.077.0 im β=  and 65.0
3 32.0 −= im β  in the 

domain 5.201.0 << iβ . Strong proton cyclotron damping starts abruptly when   5.0/ ≅ciωω  (when 

7.0/|| ≅pick ω ) or 25.0/ ≅ciωω  (when 45.0/|| ≅pick ω ) in a plasma with 1.0=iβ  or 1=iβ . Figs. 2a, b 

show the plots of the dispersion and damping rates of the Alfven-cyclotron waves in a plasma with 1  and  5i =β . 

The waves with 15.0/|| ≥pick ω  and frequencies 12.0/ ≥ciωω  or 085.0/ ≥ciωω are highly damped (with 

1/|| ≈ωγ ) in a plasma with 5=iβ  and 10 , respectively. As it follows from Figs. 1b and 2b the transition from 

the weak to strong damping starts abruptly with the increase in ||k . The hydrodynamic description for such highly 
damped waves due to the proton cyclotron resonance cannot be used. Contrary to the Alfven-cyclotron waves the 
magnetosonic-whistler waves in high-β  plasmas at quasi-parallel wave propagation are weakly damping in a wide 
range of the wave frequencies and wave numbers. Figs. 3a, b show the wave dispersion and proton cyclotron 
damping of the magnetosonic-whistler waves in plasmas with 10  and  5   ,1i =β . 
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