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Abstract. The current interest in the theory of the ballooning waves is inspired by the fact that these waves are a 
natural framework for the interpretation of the flapping motions in the magnetotail frequently observed by Cluster. 
Flappings manifest as low-frequency oscillations of the plasma sheet generated by some impulsive sources in the 
center of the magnetospheric tail (e.g., substorm activations or bursty bulk flows), and propagating predominantly 
toward the flanks. The group velocity is found to range from a few tens to a few hundreds km/s. Previously, we 
showed that the ballooning mode unlike a number of other modes matches these observed characteristics 
[Golovchanskaya and Maltsev, 2005]. Here, more rigorous formulas for the velocities of the ballooning wave 
propagation in the inhomogeneous high-β plasma confined in the curvilinear magnetic field are derived. The 
consideration is a generalization of the treatment of Liu [1997] for the case of non-zero component of the 
perturbation wave vector along the magnetic tension force. The Cauchy problem is formulated for the partial 
derivative equation of the 4th order describing the linear ballooning wave propagation in the plane perpendicular to 
the background magnetic field, and the properties of the solution are illustrated. 
 
1. Introduction 
 

The first evidence of the excitation of the ballooning waves in the Earth’s magnetotail were reported long ago 
[Speiser and Ness, 1967; Lui et al., 1978]. However the directions and velocities of the wave propagation were 
difficult to reliably determine from single-spacecraft measurements. The situation changed radically with the start of 
Cluster spacecraft system operation. It was established that the up-down oscillations of the magnetotail current sheet 
with the periods of a few minutes observed under both quiet and disturbed geomagnetic conditions is a common 
feature of magnetotail dynamics [Zhang et al., 2002; Runov et al., 2003; Sergeev et al., 2003, 2004; Runov et al., 
2005]. These oscillations referred to as the flapping motions were found to propagate predominantly in the ±yGSM 
directions, that is, toward dawn in the dawn sector and toward dusk in the dusk sector, the velocity of propagation 
increasing with geomagnetic activity. Golovchanskaya and Maltsev [2005] demonstrated that the ballooning mode 
unlike a number of other modes matches these observed characteristics. The dispersion relation derived in 
[Golovchanskaya and Maltsev, 2005] indicates propagation in the positive/negative azimuthal direction with a group 
velocity dependent on the half-thickness of the current sheet, thermal velocity of ions in the neutral sheet and wave 
number across the magnetic field. The group velocity was estimated to range from 40 km/s for quiet magnetotail 
configurations to 400 km/s for more stretched active plasma sheet, which is consistent with the observations. 
However, aiming to emphasize a close analogy between the ballooning waves in the magnetosphere and internal 
gravitational waves in the upper atmosphere [e.g. Hargreaves, 1979], those authors made some simplifying 
assumptions concerning the form of the ballooning perturbation in deriving the expression for the group velocity. 
Namely, the term ∼ 4⋅ k||

2 ky
2/(kn

2 + ky
2) in the dispersion relation, k||, kn, and ky being the components of the wave 

vector along the magnetic field B, in the direction n of the magnetic tension force and in the yGSM direction, 
respectively, was neglected. In the present study this restriction is relaxed, the dispersion relation is considered in a 
more general form (section 2) and more rigorous formulas for the ballooning propagation velocities are obtained 
(section 3). The Cauchy problem is formulated for the partial derivative equation of the 4th order describing linear 
ballooning wave propagation in the plane perpendicular to the background magnetic field. The problem is solved for 
the initial perturbation of a special form allowing the analytical solution (section 4). The results are summarized in 
section 5.  

 
2. Dispersion relation for the ballooning waves 

Similarly as it was done by Liu [1997] and keeping his denotations, we start from the one-fluid ideal MHD 
equations. They are 
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where p is the plasma pressure, ρ the mass density and γ the adiabatic compression index.  
From the force balance condition for the equilibrium we have 
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As in the typical plasma sheet configurations around the equatorial plane the gradients of the magnetic field and 
plasma pressure as well as the magnetic curvature vector are directed toward the Earth, kp, kb, and kc in (5) are 
positive.  

In the following derivation we will use the expressions for the Alfven velocity 
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Meaning the analogy between the internal gravitational waves (IGW) in the upper atmosphere and ballooning 
waves in the plasma sheet, the role of gravity in the latter case taken by the magnetic tension force (the last term in 
the RHS of the momentum equation (2)), and taking into account that the IGW propagation velocity is non-zero 
only if there is a wave vector component along the gravity, we set small perturbations of the quantities entering (1) – 
(4) in the form ∼exp(i kn n + i ky y + i k|| s – i ω t). The wavenumber kn along the magnetic curvature vector as well 
as the azimuthal wavenumber ky are supposed to be large, so that k⊥ = (kn

2 + ky
2)1/2 → ∞. Further u denotes the 

velocity perturbation (the background velocity is supposed to be zero) and prefix δ is used to mark the perturbations 
of other quantities.  

The linearization of the n-and y-components of the momentum equation (2) within the local approximation, that 
is, suggesting ∇||δX = i⋅k|| δX (see also [Ohtani and Tamao, 1993]) yields 
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In deriving formulas (6) and (7) the following relations were used (see also [Liu, 1997]) 
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From (6) and (7) the following dispersion relation can be obtained for the slow mode with dominant perpendicular 
wavenumbers 
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Since it is known that the flapping motions, which we identify with the ballooning waves, develop in the 
background configurations with high β (e.g. [Sergeev et al., 2004]), we will use at this step the condition β>>1 or 
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which solutions are 
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One can see that for kn=0 solution (17) coincides with that of Liu [1997] (his formula (26)).  
Further we choose the positive sign before the square root in the RHS of (17) implying the propagation, i.e. real ω 
case. The minus sign refers to destabilization of the ballooning mode, which was previously considered by Liu 
[1997]. 
 
3. Propagation velocities of the ballooning waves predicted from the linear analysis 

The formulas for the group velocities of the ballooning waves in the plane perpendicular to the magnetic field 
were derived by Golovchanskaya and Maltsev [2005] in neglecting the term ∼ Ο(k||) in (17). In such a case (17) 
takes the form of the well-known dispersion relation for the IGWs in the upper atmosphere 
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In the atmosphere ωg
2 = g/H, where g is the gravity acceleration, H the characteristic scale of density variation 

with height. For the ballooning waves in this approximation ωg
2 = 2cA

2
 kc(kb+kc), or supposing kb << kc for the high-

β case, ωg ≈ (√2) cA kc. 
Here we derive a more rigorous formula for the group velocities of the ballooning waves, while keeping 

preserved all the terms in (17).  
The group velocity in the y direction is given by 
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From (19) and (20) it is seen that both vy
group and vn

group vanish for kn=0. We further simplify formulas (19), (20), 
(21) by taking kn= ky ≡κ and adopting kb << kc. The formulas are reduced to 
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We consider (22), (23) for k|| ∼ Ο(kc), a case more consistent with the WKB approximation than the condition 
k||

2<<kc
2 previously suggested by Golovchanskaya and Maltsev [2005] and resulting in  
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Then the following estimates keep true 
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which is only decreased by ∼ 4 per cent compared to group
yv  given by (24).  

For the parallel group velocity we have from (23) for k|| ∼ Ο(kc) 

A
group cv

33
5

|| =        (26) 

which is close to cA.  
Relations (24), (25) permit to reasonably explain the main observed features of the flapping motions, provided 

we identify them with the ballooning waves [Golovchanskaya and Maltsev, 2005]. Indeed, (24), (25) predict 
azimuthal propagation velocities of a few tens km/s for quiet conditions, an increase in the propagation velocities up 
to 160 - 400 km/s for disturbed conditions (because of kc increasing), a dispersion over the wavelengths, namely, 
larger propagation velocities for longer wavelengths. 
 
4. Ballooning wave propagation as a solution of the Cauchy problem 

In neglecting the terms containing the field-aligned wave numbers, the dispersion relation (17) corresponds to 
the following linear partial derivative equation describing the transverse propagation of the ballooning waves  
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where 222 2 cAg kc⋅=ω . As was earlier mentioned, the sources of the ballooning waves in the magnetosphere are 
most likely substorm and/or bursty bulk flow activities. Since both are maximum at the center of the magnetotail, 
we refer the y-coordinate of the source (y = 0) to the midnight meridian. According to spacecraft observations, the 
source position along the tail (further x = 0) typically varies from xGSM  ∼ –20 RE, RE being the Earth’s radius, down 
the tail. 

The general solution of eq. (27) can be found by performing a direct Fourier transform over f and then a reverse 
Fourier transform. As a result, the solution is expressed via the initial conditions for the function f (x, y, t=0) and for 
its time derivative ft (x, y, t=0) as 
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Generally, (28), (29) describe three types of the solutions with regard their spatial behavior: (i) oscillations in the 
whole space with finite amplitude everywhere; (ii) oscillations with finite amplitude at the source point and growing 
at infinity; (iii) oscillations singular at the source point and fading at infinity. Accounting for the nature of the source 
launching the ballooning waves, we will consider only the solutions of the third type as physically meaningful for 
our problem. 

For the initial conditions chosen in a special form (see Figure 1 for the function )0,,( =tyxft )  
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eq. (27) allows an analytical solution. The solution can be written as 
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At the source point (x=0, y=0), the function f(x, y, t) given by (32) has a singularity of the order ∼ 1/r, where r is the 
radial distance from the origin of coordinates. Figure 2 shows the temporal behavior of the solution, the coordinates 
are in RE, time t is normalized by tg = 2⋅π/ωg. Within the approximation that we use in this section, the frequency ωg 

can be taken in the form 
a

vT
g 2=ω . Here vT is the thermal velocity of ions in the neutral sheet and a is the 

characteristic width of the magnetotail current sheet. The typical value of ωg is ∼ 10-1 s-1 for quiet conditions and 
several times higher for more stretched tail configurations under disturbed conditions. Correspondingly, the 
characteristic time tg varies from 1 minute to a few tens of seconds. 

From Figure 2 it is seen that the perturbation given at t=0 by (30), (31) propagates predominantly in the ±y 
directions, exhibiting dispersion over the wavelengths and forming fan-like wave structures with time. 
 
5. Summary and discussion 

Till recently the theory of ballooning perturbations in the magnetosphere has mostly been developing meaning 
the application to the substorm problem. For this purpose it is not very important whether a variation of the 
perturbation along the magnetic curvature vector is included. Even if taken into account, this effect can not be 
crucial for the occurrence of the ballooning instability, which is now considered as one of the candidates for 
substorm triggers.  

The situation changed with the appearance of Cluster observations. It was revealed that so-called flapping waves 
routinely observed in the magnetosphere are inconsistent with any conventional magnetospheric wave mode. In 
sections 2 and 3 above we extended the theory of Liu [1997], developed for the ballooning instability in a high-β 
plasma, by including a non-zero kn component of the wave vector. The obtained dispersion relation, here considered 
in a more rigorous form than previously in [Golovchanskaya and Maltsev, 2005], indicates the ballooning waves, 
which match the observed flapping characteristics.  

In section 4 we showed that even in the linear (small amplitude) case the solution of the equation describing 
ballooning wave propagation is rather complicated and has little in common with the solution of the traditional wave 
equation. The ballooning wave formulation, however, should be further complicated to account for the observational 
evidence of large amplitudes of the waves. Thus, a development of non-linear ballooning theory is needed to make a 
comparison with the observations more complete. 
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Figure 1. Initial condition for the time derivative of the ballooning perturbation. The function )0,,( =tyxft  is 
shown in relative units, with negative (positive) values marked dark (light) grey. The coordinates are in RE. The 
origin of coordinates is at the source point. 
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Figure 2. Solution of the equation for ballooning wave propagation at different times. The function ),,( tyxf  is in 
relative units, time t is normalized by tg = 2⋅π/ωg (see the text).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


