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Abstract. Based on a realistic conductivity profile, the numerical modelling of the electromagnetic wave 
propagation in the cavity bounded by the Earth’ conducting surface and the ionosphere has suggested that Schumann 
frequencies depend on height. At altitudes above 70 km, where the conductivity becomes high, a gradual decrease in the 
frequency has been found. This can be attributed to the fact that although the peaks for the total electromagnetic energy 
stored inside the cavity define a unique value for each Schumann resonance, the experimental determination of 
Schumann frequencies related with the maxima in the amplitude of the electromagnetic field Fourier transform 
spectrum is sensitive to the conductivity profile and will thus change with altitude. We show that a similar frequency 
shift can be obtained by using a simple analytical model for the Earth-ionosphere cavity. 
 
1. Introduction 
 
The realistic modelling of the propagation of 
electromagnetic waves through the ionosphere of the 
Earth is a complex challenge and requires the 
application of numerical methods. In particular, the 
Schumann frequencies in the lossy cavity bounded by 
the Earth’ surface and the ionosphere have been 
successfully determined by using the so-called 
Transmission Line Matrix (TLM) method (Morente et 
al. 2003). In this numerical method, the medium is 
substituted by an equivalent three-dimensional 
transmission line mesh formed by repeating elementary 
transmission line structures (nodes), while the 
electromagnetic field is modelled by analogous 
electrical signals, voltage and current pulses which 
propagate through the transmission line mesh. Pulses 
are scattered at the center of each node according to a 
scattering matrix associated with each node and upon 
arriving of these pulses at the adjacent nodes, the next 
time step in the simulation is initiated. Moreover, a 
broadband signal located at an arbitrarily chosen mesh 
point is introduced to model the excitation of the 
atmosphere due to lightning. By using the conductivity 
profile of Schlegel and Füllekrug (1999), Morente et al. 
(2004) have numerically modelled the Schumann 
frequencies in the Earth-ionospheric cavity and found a 
height-dependent shift of the resonance frequencies to 
smaller values. Fig. 1 displays the altitude profile for the 
first six peak frequencies obtained by means of the 
TLM method. While the frequency decrease is rather 
small at lower altitudes, it becomes more pronounced 
above ~ 70 km, where the conductivity, as shown by the 
dashed line in Fig. 1, starts to increase significantly. At 
the upper boundary, the resonant frequencies are 
reduced by about 10% of its corresponding values at the  
 
 
 
 

 
 
 
ground. This behaviour can be understood by noting 
that the experimental determination of the Schumann 
frequencies is carried out by local rather than global 
measurements of the magnetic or electric field 
components. However, these quantities depend on the 
conductivity, which varies with height, and therefore in 
a dissi-pative system, the peak frequencies may also 
vary with height. In the following section we briefly 
summarize the reasoning of Morente et al. (2004), for 
more details the reader is referred to this paper. 
 

Figure 1: First six Schumann resonance frequencies 
of the azimuthal component of the magnetic field as a 
function of altitude. The solid lines correspond to a 
discrete Fourier transform of the entire time series of ~
106 time steps, while the squares correspond to a 
reduced window from 103 -106 time steps. The 
dashed line illustrates the conductivity profile used in 
the simulation (from Morente et al. 2004). 



H. Lichtenegger et al. 

134 

2. Resonant electrical circuit 
 
Let us consider a series of parallel connected 
capacitors, conductivities and resistivities as shown in 
Fig. 2. Each sub-circuit consists of an inductance L, a 
capacitance C, and a resistance Ri which correspond to 
the magnetic permeability, the electric permittivity, and 
to the atmospheric conductivity, respectively. L and C 
are assumed to be constant, whereas Ri is considered to 
be different in each stage, thereby representing an 
altitude depending conductivity. The whole circuit is 
excited by an external current source I = I0eiωt and 
shows some characteristics similar to those of the 
medium in the Earth ionospheric cavity. 
 

 
 

Figure 2: Resonant circuits corresponding to different 
altitudes. While L and C are constant, the resistivity Ri 
changes with height, making the different circuits to 
resonate at different frequencies (from Morente et al. 
2004). 
The impedance Zi of the i-th circuit is given by 
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and the maximum amplitude |Zi| occurs at a frequency 
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It should be noted that the maximum energy transfer 
from the source into the system takes place at that 
frequency. However, the maximum amplitude of the 
current (IL)i through the i-th inductor occurs at a 
different frequency 
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where the damping constant is given by 
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Finally the current through the capacitor at the i-th 
stage is maximum at the frequency 
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showing that the capacitors, inductors and the global 
circuit all resonate at different frequencies; only for 
vanishing damping these frequencies coincide. Thus, in a 
lossy system, the resonance frequency of the magnetic 
field associated with the currents through the capacitors 
and inductances of the different stages will be different 
from the peak frequency corresponding to the maximum 
energy transfer due to the position depend resistivity. A 
similar behavior appears in the terrestrial ionospheric 
cavity in regions of enhanced energy dissipation as 
illustrated in Fig. 1. 
 
3. A simple analytical model 
 
We consider a simple spherical symmetric two-layer 
waveguide model analogue to the one treated by 
Roldugin et al. (2003) (Fig. 3). We extend this model 
by introducing a line current j at z = b which is 
assumed to have only a θ-component jθ. The inner 
boundary at z = 0 is represented by the surface of the 
Earth, where the electric conductivity σ is assumed to 
be infinite (σ = ∞). Up to an altitude z = a the relative 
electric permittivity is given by εr =εi =1, above this 
altitude (z > a), in the ionosphere, εr is assumed to have 
a different, however spatial independent value εr = εi. 
Since the main contribution to εr is due to the free 
electrons, the permittivity in the ionosphere can be 
written as 
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where ωP = (Ne2/ε0m)1/2 is the plasma frequency of the 
electrons (with e, m and N being the electron charge, 
mass and number density, respectively) and ν is the 
collision frequency between the electrons and the other 
constituents. Because we are only interested in the very 
low frequency solutions, (6) can be approximated for ω 
ω/iν << 1 by 
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with νωσ /2
p= . 

 
Figure 3: Two-layer model of the ionosphere with an 
external line current. 
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Figure 4: Magnitude of Bφ for different altitudes in the 
ionosphere. For the five lines from top to bottom the 
altitude increases in steps of 10 km from z = 80 to z = 
120 km. 
 
For a harmonic time dependence (B = B0eiωt) and a 
spatially constant dielectric permittivity, the Maxwell 
equations read 
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If we consider only TMr modes (i.e. Br = 0), assume 
that the field is independent from the azimuthal angle 
and that h << RE we obtain the homogeneous equation 
(j = 0) (Roldugin et al., 2003) 
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Including the current, we search for solutions of the 
form 

Bφ (0<z<b)=C1cos(kzz)                       (11-a) 
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and Ri is the reflection coefficient; C1,C2 and Ci are 
unknown amplitudes yet to be determined. The 
boundary conditions read 
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ffrom which the reflection coefficient and the amplitudes 
of (11-a-c) can be obtained. Using (13-a-b) yields 
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Finally from (13-a,c) and (15) it follows 
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Fig. 4 illustrates the magnitude of the Bφ-component in 
the ionosphere as a function of frequency according to 
(11-c). The different lines show the Bφ-spectrum for 
different altitudes, where the top line corresponds to 
the lowest altitude. A slight shift of the peak 
frequencies to lower values with increasing height can 
be observed. In order to find an analytical expression 
for this resonant frequency change we first note that | εi 
| >> 1 and the ionospheric wave number can hence be 
expressed as 
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Now, if we approximate the amplitudes A0 in the 
vicinity of the maxima by a Gaussian function, we 
obtain together with (17)  
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with ωr being the corresponding resonance frequency 
at z = a and ∆ω its half-width. 

 

 
Figure 5: Shift of the first peak frequency of the 
azimuthal magnetic field versus height. The following 
model parameters have been used: ωP = 1.8 x 107 Hz, ν 
= 2 x 108 s-1, a = 80 km, ωr = 94.2 Hz, ∆ω = 31.4 Hz. 
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The maximum of this function is obtained by the 
condition ∂A(z > a)/∂ω = 0 and yields the resonance 
frequency at altitude z > a 
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In Fig. 5, the altitude dependence of the first Schumann 
resonance is shown, leading to a reduction of ~ 1.2 Hz 
within 100 km or about 10% with respect to the peak 
frequency at z = 80 km. 
Conclusion 
The decrease of the forced Schumann resonance frequencies 
first found by Morente et al. (2004) via numerical 
simulations is obtained by means of a simple analytical 
model of the terrestrial ionospheric cavity. In addition 
to the results of Morente et al. (2004), it is shown that 
the resonance frequency shift can also occur in a system 
with constant (i.e. altitude independent) damping as long 
as the latter depends on frequency. 
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