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Abstract 

Theoretical model of steady-state magnetic 
reconnection in an infinite current layer in   
incompressible, collisionless, nonresistive plasma, 
except of the electron diffusion region, is developed. 
The model is built using the electron Hall 
magnetohydrodynamics approximation. Solution 
structure is determined by the Grad-Shafranov 
equation for the magnetic field potential. The 
developed model demonstrates all essential Hall 
reconnection features, namely protons acceleration up 
to the Alfven velocities, and Hall current system and 
magnetic field structure forming. The model allows 
claiming that the necessary condition of the steady-
state reconnection to exist is the electric field 
potential jump across electron diffusion region and 
separatrices. The magnitude of this jump must be 
proportional to the external magnetic pressure.  
Besides the electron velocity has to grow up to the 
electron Alfven velocity inside the diffusion region 
and on the separatrices and this is the necessary 
condition as well. 
 
Introduction 

Numeric experiment and in-situ observation data 
obtained over the last years permit considering the 
Hall MHD (HMHD) approximation as a minimal 
sufficient description for the magnetic reconnection 
process in collisionless plasma, [e.g. 1,2,3]. The Hall 
effect breaks the frozen-in condition for protons 
therefore protons become insensitive to the magnetic 
field. But this effect keeps the magnetic field frozen 
in the electron fluid [4]. It is well known that a small 
region around the X-point exists, where the electron 
Hall MHD (eHMHD) approximation is permitted to 
be used [5]. Indeed, the proton’s velocities are 
negligibly small compared to the electron’s ones in 
the nearest vicinity of the stagnation X-point. Hence 
one may consider the electric current in this region as 
electron current only. This assumption is the matter 
of eHMHD. The applicability domain of this 
approach is smaller than the HMHD region, its size is 
not bigger than the proton inertial length. 
Nevertheless the eHMHD approximation, being 
simpler then HMHD, is proved to be of material 
significance. Namely it allows building a rich in 
content analytical model of steady-state reconnection 
based on the Grad-Shafranov equation (Gr.-Sh. eq.) 
solution. 

The problem formulation 
We examine the problem of steady-state 

magnetic reconnection in an infinite current layer. 
We intend to build the analytical model of this 
process in the nearest vicinity of the X-line using the 
eHMHD approximation, so the modeling region size 
is bounded by proton inertia length (in the direction 
of proton acceleration). As for the electron diffusion 
region (EDR) our aim is to avoid its internal 
processes description, only its size is considered. 
Outside this region the plasma is supposed to be 
nonresistive. Besides we suppose the plasma to be 
electro-neutral and incompressible and electrons to be 
cold (Te<<Tp). The last condition is usual in the 
numeric modeling, see [e.g. 6]. It allows neglecting 
of the electron pressure comparatively to the proton 
one. The magnetic field structure is shown 
schematically in Fig.1. The coordinate system choice 
is fixed in this figure: 

X-axis is field-at-infinity-aligned, Y-axis coincides 
with the electric current direction and Z-axis is 
perpendicular to them both (Fig.1).  
The mathematical formulation of the problem 
consists of seven equations:  
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The last equation here is eHMHD approximation 
where Ve designates electron bulk velocity while V is 

 

Fig.1. Scheme of the magnetic field structure 
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plasma bulk velocity. Note that the generalized  
Ohm’s Law (2) in nonresistive HMHD may be 
rewritten in a form of an electron frozen-in condition: 

1 0
c

+ × = .eE V B         (8) 

Since the infinite length of the current layer all 
variables in these equations are functions of two 
spaces coordinates x and z only while we have chosen 
the current direction as y axis. Under this condition 
and assuming a steady-state case Faraday’s Law (4) 
leads to the Ey constancy. So we define:  

y AE Eε= ,          (9) 
where ε is reconnection rate and EA is the Alfvén 
electric field, EA=(1/c)B0VA. Here B0 is the magnetic 
field value at infinity and VA is the corresponding 
proton Alfvén velocity. 
 
Grad-Shafranov equation 
 Here we rearrange the original system (1) – (7) 
to the system of four recurrent equations based on the 
Gr.-Sh. eq. First we trespass to dimensionless units. 
We normalize the magnetic field strength by the 
external field value B0, the proton and electron bulk 
velocity (Vp and Ve) by the proton Alfven velocity 
value VA, the electric field strength by the Alfven 
value EA, and space scales by lp – the proton inertial 
length value. lp is defined as the light velocity c 
divided by the proton plasma frequency ωp: 

24
p

p
p

mcl c
neω π

= = .                                       (10) 

We introduce potentials of the electric and magnetic 
field (φ and A) and flow-function for the electron 
bulk velocity Ψ, following the common way [5]: 

,ϕ⊥ ⊥= −∇E                                                            (11) 
( ),A⊥ = ∇× yB e                                                      (12) 

( ).⊥ = −∇× Ψe yV e                                                  (13) 

Here and below symbol ┴ designates the xz plane that 
is perpendicular to the current direction defined by 
the unit vector ey. Then we take into consideration 
equation of motion (1). Expressing the current 
density j through the electron velocity Ve according to 
the eHMHD approximation (7) we obtain from (8): 

.e ϕ× = − × = = −∇j B V B E                                    (14) 
 Substituting the result in the equation (1) and 
replacing the plasma bulk velocity V by the proton 
velocity Vp (neglecting of terms of me/mp order), we 
obtain Bernoulli’s Law for the proton motion: 

21 ,
2 p trajV p constϕ⊥ + + =                                        (15) 

where consttraj denotes the constant along trajectory. 
Equations (3) – (6) then take form: 

,eϕ∇ = ×V B         (16) 
,∇× = − eB V         (17) 

0,∇⋅ =B         (18) 
0.∇⋅ =pV         (19) 

Expressing functions B┴ and Ve┴ through the 
potentials A and Ψ according to (12, 13) and 
substituting result to the equation (17) we obtain 
significant identities: 

,                 .ey yV A B≡ ≡ Ψ∆      (20) 
Further we consider equation (16). Scalar products of 
this equation and vectors B and Ve, respectively, can 
be written as follows: 
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∂
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( ) .eyVϕϕ ε⊥ ⊥
⊥

∂
⋅∇ ≡ =

∂e
e
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     (22) 

On the other hand the y-component of equation (16) 
is precisely a Jacobian of the transformation of 
variables (x,z) → (A,Ψ) while A and Ψ are defined by 
equations (12, 13): 

( , )
( , )ez x ex z
AV B V B
x z

ε ∂ Ψ
= − ≡

∂
     (23) 

In the new variables operators ∂/∂B┴   and ∂/∂Ve┴    
take form: 

,                   .
A

ε ε
⊥ ⊥

∂ ∂ ∂ ∂
≡ ≡

∂ ∂Ψ ∂ ∂eB V
   (24) 

Considering identities (20, 24) equations (21, 22) 
should be written as follows: 

,       .A
A

ϕ ϕε ε ε ε∂ ∂
= Ψ =

∂Ψ ∂
∆        (25,26) 

Integrating the first of these equations we obtain 
equation for electric potential φ: 

21 ( ).
2

G Aϕ = Ψ +        (27) 

Operator ∂/∂B┴ being applied to the function Ψ gives 
(according to (24)): 

.ε ε
⊥

∂Ψ ∂Ψ
= =

∂ ∂ΨB
       (28) 

So if we know potential A, we can find the magnetic   
field   components   Bx   and  Bz  and  then 
potential Ψ≡By according to equation: 

.A A
x z z x

ε∂ ∂Ψ ∂ ∂Ψ
− =

∂ ∂ ∂ ∂
      (29) 

At last expressing potential φ according to (27) and 
substituting the result in the equation (26) we obtain 
the Grad-Shafranov equation for the potential A:  

( ) .dG AA
dA

=∆         (30) 

Thus, four recurrent equations formulate our 
problem: 
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Now scheme for the system (31) solution finding is 
evident. By solving the Gr.-Sh. eq. we define 
potential A. Then we find magnetic field B┴ and Ψ 
which is equal to By. After that the potential φ is 
evaluated. The last unknown function we need for the 
proton motion finding is the gas pressure p. This 
problem may be passed over by the boundary layer 
approximation (see below). Besides the Gr.-Sh. eq. 
being complicated in itself contains the unknown 
function G(A). Fortunately this function is unknown 
but not unimaginable.   
  
Function G(A) 

Function G(A) is defined by the physical 
conditions of the problem. To make it out we first 
note that according to the magnetic field geometry 
(see Fig.1) function A(x,z) has a saddle-type 
configuration, so we can simply define the sign of 
function A(x,z). Its sign is positive in the outflow 
regions (OR), negative in the inflow regions (IR) so 
A(x,z)=0 on the separatrices (in the origin including). 
Then we put it by and consider function Vey that is 
dG/dA. Due to the frozen-in condition (8) which is 
satisfied everywhere except EDR we can claim that 
the acceleration of electrons in the y direction is 
unrealizable out of EDR. Inside EDR electrons tear 
off the magnetic field and the electric field Ey 
accelerates them unimpeded. Hence, in the origin 
point function Vey has minimum (because the electric 
current direction coincides with the positive direction 
of the y axis). And sharpness of this minimum 
depends on the EDR size. Formally the approximated 
Ohm’s Law we used here (2) implies the EDR 
absence and leads to the δ-function type of Vey. 
Replacing δ-function by any function with non-zero 
peak width we therethrough define the EDR size. 
Composing information about function A and 
Vey≡dG/dA we can figure out the likely behavior of 
the function     dG/dA. By integrating this function we 
obtain G(A) (see Fig.2). 

 
The boundary layer approximation 

 Geometry of the problem permits the boundary 
layer approximation usage. Namely the separatrices 
incline angle tangent is the ε order value. As far as 
ε<<1, the derivatives in x-direction are much less 
then in z-direction and x-components of all quantities 
are much bigger then z-components. In particular it 
means that Vpz<<Vpx, so Vp

2 ≈ Vpx
2 (here Vp designates 

the proton velocity in the xz-plane). Furthermore 
rewriting equation (1) as follows: 

2 1( ) ( ) ,
8 4
Bpρ
π π

⎛ ⎞
⋅∇ = −∇ + + ⋅∇⎜ ⎟

⎝ ⎠
V V B B   (32) 

under this scaling reason we conclude that the full 
pressure P=p+(1/8π)B2 is constant along z-direction. 
Therefore we have (in dimensionless units): 

21 .
2

p B
z z
∂ ∂

= −
∂ ∂

       (33) 

Recalling that By≡Ψ, under these conditions we 
obtain from the equations (31.1, 31.2): 

2 2 21 1 ( ) ( ) 0.
2 2px x zV B B G A

z
∂ ⎡ ⎤− + + =⎢ ⎥∂ ⎣ ⎦

   (34) 

This equation and incompressibility condition (6) 
allow the proton motion evaluation, if function G(A) 
is known and magnetic field is found.  
 At last neglecting the x-derivative in the Gr.-
Sh. eq. (31.4) and integrating it once by z we obtain 
the boundary problem for potential A: 

1
0

2 ( ) ( )

| [ ( )],z

A G A C x
z

A G C x−
=

∂
= ⋅ + ,

∂
= −

m
     (35) 

where C(x) is defined by the magnetic pressure at 
infinity and G–1 is the inverse function for G. Thus 
the boundary layer approximation completes the 
analytical model of our problem construction. 
 
Results 

The problem formulation based on the Grad-
Shafranov equation (31) allowed obtaining some 
impotent results without finding this system solution. 
This is the appreciable advantage of the approach that 
has been developed. 

The significant role of By component is 
established. It turns out that By is the electron bulk 
velocity flux-function (13, 20). It means that curves 
By =const are the electron trajectories in the xz plane 
(see Fig.4).  

It is found that an electric field potential jump 
across the EDR and separatrices is the imperative 
feature of steady-state reconnection. The magnitude 
of this jump is determined by the constraints for 
equation (35). According to the nonnegativity 
condition of the radicand maxG(A) must be equal to 
1/2 so jump of G(A) is equal to 1 (see Fig.2). As far 
as magnetic field component By≡Ψ<1 equation (31.2) 
claims that an electric field potential jump must be 
proportional to the external magnetic pressure as 
well:  ∆φ~∆G(A)~1, or in dimensional units: 

ne
B
π

ϕ
4

~
2
0∆         (36) 

Under this condition the proton velocity reaches up to 
the Alfven value in the OR. Indeed we may rewrite 
Bernoulli’s Law for protons (34) as follows: 

2 2 21 1 ( ) ( ) .
2 2px x z trajV P B B G A const+ − + + =   (37) 

Fig.2. Functions Vey and G(A). µ is the EDR size 
in the A-space. 
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The full pressure dependence on x-coordinate as well 
as external magnetic field dependence is the ε-order 
variation. At contrary function G(A) tends to its 
maximum in the IR (1/2) and to its minimum in the 
OR (-1/2). Magnetic field component Vx is equal to 1 
approximately in the IR and it is ε-order value in OR. 
Vz component is small everywhere. Equation (37) 
under these simple consideration leads to the 
announced conclusion.  

As a consequence the powerful mechanism of 
electron acceleration in the direction of the X-line is 
required. It is to accelerate electrons up to the 
electron Alfven velocity value inside the diffusion 
region and on the separatrices. This estimation is 
obtained as follows:       (38) 

∫∫ ∂
∂

=∆
pepe ll
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e
eyxey
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l
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/
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/
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where le is the electron inertial length and le/lp is the 
cross sectional size of EDR measured in proton 
inertial length units. Thus we obtain: 

e

p

e

p
ey m

m
l
l

V =~        (39) 

Numerical solution was built as well. The recurrent 
system (31) was solved in the boundary layer 
approximation. It means that approximated equation 
(35) was considered instead of the precise equation 
(31.4). The modelling function G(A) was chosen as 
follows:  

1( ) arctan ,AG A
π µ

= −       (40) 

where µ is the EDR size in the A-space.  The 
boundary condition was set as function Bz(x,0). This 
function must be equal to zero in the origin due to 
symmetry and it must trend to the constant out of 
EDR when electrons become frozen-in due to the 
Ohm’s Law (8). We chose this function as follows:  

( ,0) (1 exp( )).zB x xχ α= − −      (41) 
Here we present two results demonstrating the 
obtained solution for the fixed parameter values: 
µ=0.0075, α=0.5, χ=0.2, and ε=0.3. 
The numerical solution completely confirms the 
analytical conclusions. Solution demonstrates all 
essential Hall reconnection features, namely the 
proton acceleration, the forming of Hall current 
system (Figs 3,4) and the quadrupole magnetic field 
structure. These features were pointed out by 
Sonnerup [7] and observed by a number of authors 
[e.g. 2, 3]. 
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Fig.3: Proton trajectories (dashed) and magnetic 
field structure (solid). 

Fig.4: electron trajectories plotted as equipotential 
lines of  By. Empty rectangle near the origin is the 
EDR where our numeric scheme is not applicable.


