Search for the solar wind parameters controlling the Poynting flux into the high-latitude ionosphere

A. A. Ostapenko, Y. P. Maltsev (Polar Geophysical Institute, Apatity; ostap@pgi.kolasc.net.ru)

We used electric and magnetic field measurements of the Dynamics Explorer-2 satellite performed for one and half year period to find the spatial distribution of the Poynting vector $\mathbf{P} = [\mathbf{E} \times \mathbf{B}]/\mu_0$. DE2 measured only one horizontal electric field component directed along the satellite trajectory. Therefore, the Poynting flux was systematically underestimated. From model calculations we estimate the average error as \sim 15-50%. The global distribution was obtained by averaging the Poynting flux in spatial bins for various ranges of geomagnetic indices and solar wind parameters. The bin sizes are 2 degrees of latitude and 2 hours of local time. Under low activity, the flux is maximum in the cusp region. Under high activity, two maximums in the dawn and dusk auroral latitudes dominate. Small-scale (<100 km) structures appeared to yield significant (~75%) contribution to the Poynting flux. Integration over the whole ionosphere area yields the following empirical expressions relating the total field-aligned Poynting flux to geomagnetic indices: Q = 0.212 AE, Q = 26.9 Kp - 15.1, Q = 34.3 - 1.04 Dst, where Q is expressed in GW. The underestimation of Q seems not to prevent to choose the best solar wind parameter controlling the Poynting flux flowing into the ionosphere. We considered several solar wind parameters. In particular, the Akasofu parameter ε appeared to correlate with the Poynting flux rather well. The corresponding relation has the form $Q = 45.7 + 0.00182 \epsilon$, where $\epsilon = V B^2 \sin^4(\theta/2)$, solar wind velocity V is expressed in km/s, interplanetary magnetic field B in nT. However a better correlation was obtained with a linear combination of the duskward electric field $E_{yr} = -VB_s$ (B_s is the IMF southward component) and plasma energy flux pV where $p = m_p n V^2$ is the solar wind dynamic pressure, m_p and n are the proton mass and number density respectively. We obtained the following relationship: $Q = \omega \equiv 11.3+31.7 E_{vv}+0.0163 pV$, where E_{vv} is in mV/m, p is in nPa. The dependence $Q(\omega)$ in narrow ranges of ε appeared to be several times stronger than the dependence $Q(\varepsilon)$ in narrow ranges of ω.