

THE ECOLOGICAL ASPECTS OF GROUND-LEVEL MONITORING IN THE KOLA PENINSULA

V.I. Demin, M.I. Beloglazov (Polar Geophysical Institute Kola Scientific Centre, RAS, Apatity, Russia)

Abstract

Results of surface ozone concentration measurements in the Kola Peninsula (Lovozero, since 1999; Apatity, since 2002) are discussed. For all periods of measurements and for all monitoring points the cases of the exceeding of the critical levels are not found. Signatures of photochemical smog during summer periods in Apatity city are not detected. In Apatity city the lower ozone concentrations take place more offen, then in Lovozero. This is caused by the additional ozone destruction in reactions with nitric oxide and other anthropogenic pollutions. During winter, conditions of the surface inversion and wind velocity are less 2 ms⁻¹ in Apatity city in dally hours unfavourable ecological situations may occur.

Introduction

According to ecological requirements, the ground-level ozone is included in the substance group, which is subjected to the unremitting control. There is given the priority list of pollutants (Table 1). The experts of the First intergovernmental conference on monitoring made this list according to the monitoring in Nairobi in 1974 (the less classes number, the higher priority).

Table 1. Priority	/ classes	of the	environment	pol	lutants /	1/.

Priority classes	Pollution	Surroundings	
I	Sulphur dioxide, suspended part	Air	
	Radio nuclides	Air, food	
II	Ozone	Air	
	DDT and chlorine-organic compounds	Biota, human	
	Cadmium	Food, human, water	
III	Nitrate, nitrite	Water, food	
	Nitric oxide, nitrogen peroxide	Air	
IV	Mercury and its compounds	Food, water	
	Lead	Air, food	
	Carbon dioxide	Air	
V	Carbon monoxide	Air	
	Fluorides	Water	
VI	Asbestos, arsenic	Air	
VII	Micro toxins	Food	
	Reactive hydrocarbon	Air	

In Russia the background ozone belongs to the class of substances of the first dangerous category, too. The list of the main ozone critical levels and standards that apply to European countries is presented in Table 2.

Discussion

The monitoring of the background ozone in the Kola Peninsula has been done since 1999 (Lovozero). In additions, since 2002, the monitoring has been done in Apatity city and its suburbs (2 km from city). For all periods of measurements and for all monitoring points the cases of the exceeding of the critical levels are not found. The maximal concentrations of the background ozone are far from reaching the maximum allowed (Fig.1) and their absolute values never exceed concentrations of ozone at the upper edge of the boundary layer. Signatures of photochemical smog during summer periods in Apatity city are not detected.

Note, that in Apatity city the lower ozone concentrations take place more offen, then in Lovozero. This is caused by the additional ozone destruction in reactions with nitric oxide and other man-made pollutions. The lower concentrations are not dangerous, but they testified about the presence of other dangerous air compounds in great quantity in the city air (NO, hydrocarbon and etc.) and about total decrease of the oxidizer quality of the city atmosphere.

Table 2. Ozone critical		

Set by		Criteria	Value
European Council Directive 92/72/EEC	Population information threshold	1 hour average	180 μg m ⁻³ =90 ppb
	Population warning threshold	1 hour average	$360 \mu g \text{ m}^{-3} = 180 \text{ ppb}$
	health protection threshold	fixed 8 hour means	110 μg m ⁻³ =55 ppb
UNECE-CLRTAP	Critical level for crops and	AOT40 * daylight hours	3,000 ppb h
	semi-natural vegetation	May to July	
	critical levels for forests	AOT40 daylight hours	10,000 ppb h
		April to September	
WHO	Guideline for the protection of human health	Running 8 hour maximum	$120 \ \mu g \ m^{-3} = 60 \ ppb$
	Critical levels for	AOT40 daylight hours over	
	agricultural crops	3 months	5,300 ppb h
	Critical level for forest	AOT40 all hours over 6	. 11
		months	10,000 ppb h
Russia		1 hour average	80 ppb

[•] AOT40 is the accumulated concentration over a threshold of 40 ppb.

As rule, the lower ozone concentrations in Apatity city take place during the cold half-year, when the manmade pollutions accumulated in the boundary layer in conditions of the surface inversion. During winter, conditions of the surface inversion and wind velocity are less 2 ms⁻¹ in Apatity city in dally hours unfavourable ecological situations may occur. During summer months this situations do not arise, as there exists an unstable stratification during the most part of the day and there are no conditions for accumulation of ozone-destruction substances.

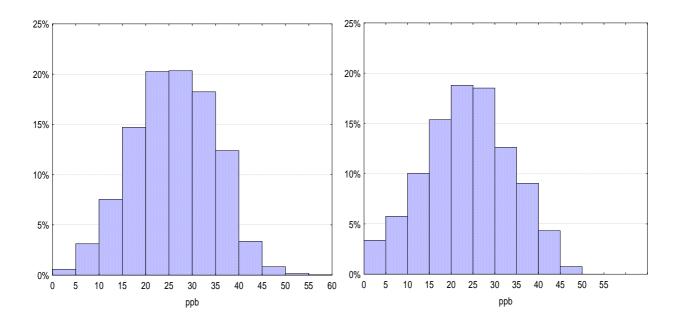


Fig.1. Frequency distributions of the ground-level ozone in Lovozero (rural side) and Apatity city.

Since the measurements periods in the Kola Peninsula is short, we can say nothing about the ozone trend, which is detected by the number of European stations. But it is known, that the background ozone trend is absent in northern Finland (according to data of Sodankjula observatory) and in northern Sweden (Esrange), where the measurements periods are over 10 year. This circumstance may suggest that the abnormally high background ozone concentrations during summer periods do not represent an actual problem in the near future.

Acknowledgements. This study was supported by RFFR grants N 02-05-64114, 02-05-79148, 04-05-79085 and INTAS N 01-0016.

References

1. Isaev A. A. Ecological climatology. Nauchny mir, Moscow, 2001, 456 p.