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Abstract. The aim of this work is to describe the 
behaviour of flux transfer events based on a time-
dependent Petschek-type model of reconnection. In 
the frame of this model, we are able to evaluate the 
magnetic field configuration and the plasma flow 
components, as well as the shape of the Petschek 
shocks. We consider two different kinds of 
hypothetical measurements, namely along a profile 
Bz(x) and along a trajectory Bz(t). By using a discrete 
Fourier transformation, we are able to calculate the 
magnetic field along a certain profile Bz(x). Out of 
this profile, we reconstruct the reconnection electric 
field at the reconnection site. This is an ill-posed 
inverse problem, which we treat with the method of 
regularisation. But satellite measurements are always 
trajectories and therefore we use the Cagniard-
deHoop method to calculate the magnetic field 
configuration along a trajectory Bz(t). The solution is 
given as a convolution integral, which is a well-
known problem in the theory of inverse problems. By 
using a regularisation operator, we can reconstruct 
the reconnection electric field for different initial 
electric field configurations.  

1. Introduction 
In a search for reconnection at the dayside 
magnetopause, Russell and Elphic (1978)  noticed 
that there appear localized, transient reconnection 
events, which can be identified by an isolated bipolar 
variation of the magnetic field component normal to 
the magnetopause and a simultaneous deflection in 
the tangential components, which can be interpreted 
as disturbances caused by a moving flux tube passing 
by the satellite. They named these characteristic 
events “flux transfer events” (FTEs). The 
implications of time-varying, localized reconnection 
models for the interpretation of FTEs have been 
discussed by Semenov et al. (1992).  
After the observation of these FTE signatures, some 
attempts were made to reconstruct different features 
of the reconnection process involved. 
Walthour et al. (1994) developed a method for 
inferring the cross-sectional size, shape, and the 
speed of propagation of a thin, infinitely long 

obstacle corresponding to a flux tube. Since the 
analysis is confined to perturbations outside the 
obstacle, the method is referred to as a remote 
sensing method. Lawrence (1998) analyzed a series 
of FTE-like events generated by a time-dependent 
model of reconnection, where he studied the effects 
of three different reconnection fields on the 
perturbations. Hau and Sonnerup (1999) developed a 
method to reconstruct two-dimensional space plasma 
structures in magnetohydrostatic equilibrium, and 
applied this model to two magnetopause crossings by 
the spacecraft AMPTE/IRM (Hu and Sonnerup, 
2003). But these models do not intend to reconstruct 
the reconnection electric field. Here we present two 
different models to investigate the reconnection rate, 
which is the most important feature to describe the 
reconnection process, from perturbations in the 
ambient magnetic field. 

2. MHD description of asymmetric magnetic 
reconnection 
The basic configuration used in our model is shown 
in Fig. 1. The magnetic fields are orientated 
antiparallel and have different field strength, namely 
Ba in the upper half plane, and Bb in the lower half 
plane.  

 
Fig. 1: Magnetic field configuration for asymetric 

reconnection. 

The background magnetic fields and the total 
pressure P are assumed to be constant. Additionally, 
we consider a fixed plasma, meaning that v = 0 in the 
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inflow region in zero order. The shocks fa and fb 
bound the outflow region, where the magnetic field is 
Bi. The current sheet separating the two different 
plasmas is located in the x-y plane.  
We consider the incompressible case, and introduce 
normalized quantities (Semenov et al., 2003) giving 
the MHD equations for an ideal fluid as 
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where B, v, and P are the magnetic field, the plasma 
flow velocity, and the total pressure, respectively.  
If we perform an order-of-magnitude estimation, we 
can use the assumption for weak reconnection that 
quantities perpendicular to the current sheet are small 
compared with the tangential components. Now the 
problem can be separated in two different steps. First 
we can evaluate the tangential components Bix and vix 
from the non-linear system of MHD equations for the 
zero order by assuming that these quantities are 
constant. If they are constant, they can be found from 
the Rankine-Hugoniot relations directly. In a second 
step, we can determine the components Biz and viz 
from the linearized system of MHD equations in the 
first order approximation. 
After some algebra (Semenov et al., 2004) the 
boundary conditions for the magnetic field 
components at z=0 in the two inflow and the outflow 
region as 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) (6)                     ,sgn /

 (5)               ,sgn /         

sgn /

 (4)               ,sgn /         

sgn /

5

4

30

2

10

xcxtEcB

xBxtEc

xcxtEcB

xBxtEc

xcxtEcB

ix

b

bz

a

az

−=

−−

−−=

−−

−−=

 

where E is the reconnection electric field, which is a 
function of its argument, and c1-c5 are constants 
depending on the magnetic field configuration. These 
three equations are the Dirichlet boundary conditions 
needed to solve the Laplace equation to get the 
magnetic field configuration in the whole space. The 
solution of the Dirichlet problem in both half planes 
is given by the Poisson integral, which is a special 
form of a convolution integral in space, for the x- and 
z-components of the perturbed magnetic field. For the 
computational treatment of the problem and for 
solving the inverse problem it is more convenient to 
calculate the Fourier transform of the magnetic field 
at the reconnection line and solve the problem in 
Fourier space (Semenov et al., 2004). The Fourier 
transform of the magnetic field is found to be 
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where Baz0,bz0 is the magnetic field at z=0 and for each 
half space, and γ is a parameter from the Fourier 
transformation. From this equation, the magnetic 
field along a profile can be found for the whole half 
space. 

3. The inverse problem applied to a magnetic 
field profile 
An inverse problem is given if we consider a certain 
phenomenon, which cannot be observed directly. The 
indirect observed attributes of the phenomenon are 
correlated with the phenomenon itself via an certain 
operater. To achieve informations of the process it is 
necessary to find the inverse of the operator. If this is 
not possible for the whole space, and if the solution is 
not stable, such problems are called ill-posed inverse 
problems (Tikhonov and Arsenin, 1977). In our 
problem, the observed attributes are the magnetic 
field measurements Bz at a certain distance, and the 
phenomenon we reconstruct is the magnetic field at 
the reconnection site. Therefore, this inverse problem 
is of the form  
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where M is an regularisation operator (Tikhonov and 
Goncharsky, 1987), which is used to avoid that the 
solution becomes unstable or goes to infinity. In this 
case, it is useful to consider this operator as a small 
constant value. Based on the reconstruction of the 
magnetic field configuration at the reconnection site, 
we developed an iteration method to reconstruct the 
reconnection electric field, which works good for 
asymmetric magnetic field configurations in both half 
planes. But for nearly symmetric conditions, many 
iteration steps become necessary, and the results are 
not satisfying anymore (Penz, 2002). Furthermore, 
realistic satellite measurements are always a 
trajectory and not a profile. 

4. The Cagniard-deHoop method for 
incompressible plasma 
To calculate the magnetic field components along a 
trajectory, we use the so-called Cagniard-deHoop 
method, which is used in seismology to describe 
elastic waves. The method was applied to 
reconnection problems by Heyn and Semenov 
(1996). This method will give us the magnetic field 
components as a convolution integral in time, which 
can be treated convenient in the theory of inverse 
problems. 
It is possible to find a solution for the displacement 
vector, from which the magnetic field and plasma 
flow parameters can be derived easily, in Fourier-
Laplace space. The Cagniard-deHoop method is used 
to perform the inverse Laplace transform analytically, 
which gives the magnetic field in the upper half plane 
as  
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where g(x,z,τ) is the integration kernel, which 
depends mainly on the magnetic field configuration 
and the relative position of the spacecraft, c6 is a 
constant, and E(t-τ) is the reconnection electric field, 
which we reconstruct in the following. 

5. Reconstruction of the reconnection rate out 
of a trajectory 
In nature, the shocks are moving with velocities of 
some hundred km/s, while the satellite's velocity is 
only some km/s. Therefore, we can consider the 
satellite as fixed, meaning that x=const and z=const 
in this case. Now the magnetic field is only a function 
of time Bz(x,z,t)= Bz(t). In Laplace space, the 
convolution integral can be written as 

),()()( pEpKpBz =                            (11) 
which is similar to Equation (7) in the Fourier 
method. Here, K(p) is the integration kernel from 
Equation (10). To reconstruct the reconnection       
electric field we introduce again a regularisation 
operator M(p) giving 
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This operator is choosen that it does not influence the 
electric field for small values of p, but when the 
functions Bz(p) and K(p) reach small values, the 
denominator is forced to go to infinity, so that the 
reconnection electric field is zero in Laplace space 
and large oscillations are suppressed. 
At first, we use an initial electric field of the form  
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with b=4, which corresponds to a reconnection rate 
of approximately 0.1. We can use the magnetic field 
trajectories obtained via the Cagniard-deHoop 
method to reconstruct the electric field. If we use a 
magnetic field configuration with Ba=2 and Bb=-1 
and reconstruct the electric field from a satellite 
position at x=5 and z=2 the result is very satisfying. 
For a stronger asymmetric magnetic field 
configuration yields even better results. Also for sine-
shaped reconnection electric field the method works 
compareable to the case of an exponential 
reconnection electric field, but the smooth behaviour 
of the exponential field reduces oscillations. 
Additionally, we can model the case of two 
reconnection pulses. Here we use a initial 
reconnection electric field of the form of two sine-
shaped pulses, which are separated by a certain time 
interval. If we apply our reconstruction method to 
such a electric field, we can reconstruct the electric 
field for z=2 very good and for z=5 qualitatively for 
a magnetic field Ba=2 and Bb=-1. If the  time 
separation between two reconnection pulses is 

smaller than 1 time unit, the method works only for 
small distances above the reconnection site. 
 

 
Fig. 2: Reconstructed and initial electric field for a 

position x=5 and z=2 (dotted line) and z=5 (dashed-
dotted line) for a magnetic field configuration Ba=2 

and Bb=-1. 

 

 
Fig. 3: Reconstructed and initial electric field two 

sine-shaped reconnection pulses for Ba=2 and  
Bb=-1 for a distance of z=2 (dotted line) and z=5 

(dashed-dotted line). 

6. Conclusions 
We presented a new method for the reconstruction of 
the reconnection rate from disturbances in the 
ambient magnetic field, which can be considered as 
the measurements of a hypothetical satellite. First, the 
magnetic field components at the reconnection site 
are determined from a profile. The convolution 
integral for this case is given as a Poisson integral. A 
solution of the Poisson integral can be found in 
Fourier space rather than in Laplace space by using a 
regularisation method to solve the inverse problem. 
For this case we developed a iteration method to 
reconstruct the electric field for most magnetic field 
configurations. But in this case we reconstruct the 
data from profiles, which are not realistic for satellite 
measurements. In a second approach, we use the 
Cagniard-deHoop method to calculate the magnetic 
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field components along a trajectory. In this case, the 
magnetic field is given as a convolution integral, 
which can be solved by applying a regularisation 
operator. It was shown that this method gives the 
reconnection electric field quantitatively good for 
values of z<5, corresponding to 50 times the height 
of the outflow region. We used different initial 
electric fields, and found that the method works 
better if the initial field has a smooth behaviour. The 
magnetic field configuration also influence the results 
in a way that a larger ratio between the magnetic 
fields on both sides of the discontinuity leads to a 
better reconstruction of the initial reconnection 
electric field. Also for reconnection pulses with a 
time separation of  t>1, the method works 
sufficiently. 
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