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1. Introduction
Magnetic hydrodynamic equations written in the dipole coordinate system are typically used in numerical

modeling of the ionosphere, plasmasphere and inner magnetosphere in calculating spatial and temporal variations of
thermal plasma parameters [1,2,3]. This coordinate system is distinguished because the geomagnetic field in the near
Earth space is to a good accuracy approximated by the field of a dipole located in the Earth�s center. If the radial
distance, co-latitude and azimuthal angle of some point in the solar-magnetic coordinate system are denoted by r, θ,
and γ, respectively, then the dipole coordinates of the point are [4]
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where R is the Earth radius. The coordinate β varies along geomagnetic field lines. The metric coefficients of the
orthogonal coordinate system α, β, γ can be written as [1,2]
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In the height range h ≥ 150 km, where the transport processes are important, thermal plasma is magnetized
and, hence, the hydrodynamic velocity of the i-th ion species is represented as
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where mE
r

 is the magnetospheric convection electric field, and ωr  is the corotation velocity.

2. Transformation of transport equations

In the reference frame of dipole plasma tube drifting across the field with the velocity W
r

, density of the i-th ion
species is described by the system of continuity and momentum equations
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Here ( ) γα hhA αϕ=  is the cross-section of the tube determined according to (1) and accurate to an

arbitrary function )(αϕ ; and ∇⋅+∂∂=
rr

Wtdtd //  is the Lagrangian derivative.
Let the function )(αϕ  be defined in such a way that the cross-section of the tube is
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Instead of the dipole coordinates α, β, γ, we introduce the new spatial variables L, x, y via the transformation

L = α, x = X(α,β), y = γ, (3)

and transfer from the density in  and flux iiVn  to the functions:
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The quantities l , τ  and ψ in (4) are determined by the relations
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Having transformed to new variables and functions, instead of equations (1) and (2) we obtain equations for
the quantities iF  and iΦ  in a conservative form
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In a similar manner, the conservative form can be obtained for the heat balance equation. Let aaa kTnp =
be the pressure of plasma component a. The heat balance equation for this component may be written as (1) and by
adding to it the transport equation of internal energy along geomagnetic field lines, we obtain the following system
of equations:
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characteristic cooling time due to collisions; and aκ  is the thermal conductivity coefficient of electrons or ions
along the geomagnetic field.

If now instead of pressure ap  and energy flux ah , we introduce the new functions
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then, by applying transform (3), we get for the quantities aE  and aΓ  a conservative system of equations in the form
of (6), (7).

3. Application of the transformed equations in numerical models of the ionosphere
In order to use the above transport equations of particles and energy in the dipole geomagnetic field, it is

necessary to specify the form of transform (3), i.e. to set the function ),( βαX . Further two cases will be
considered, which we refer to as ionosphere case and plasmasphere case. The former situation is typical for h ≤ 1000
km, whereas the latter is related to greater heights, where field line curvature is the largest.

Ionosphere. In this height range, magnetic field lines at geomagnetic latitudes Λ ≥ 40° are close to straight
lines, so that it is convenient to choose
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Here 0αW  is the drift velocity component in the direction α on a sphere of radius 0rr = , i.e. at the bottom of the
field line (as is the case for all quantities with the index �0�). Hence, it follows, in particular, that the parameter τ
plays the role of a time scale of coordinate changes in the transverse transport of plasma between the tubes of a
different volume. Of course, this scale does not change along field lines.

Plasmasphere. In the lower part of this height range the field lines are nearly vertical, whereas in the near-
equator region they are virtually horizontal. Therefore, the coordinate along a field line can be presented by a
dimensionless quantity
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Here the quantities marked with an asterisk refer to a sphere of radius r∗ , which is the lower boundary of the
plasmaspheric region. Note, that with such a choice of X(α, β), any dipole field line is mapped into a fixed segment -
1 ≤ x ≤ +1.

4. Summary
We have transformed the ionospheric transport equations to the conservative form of (6), (7), which is a

standard form for numerical flow run method. The use of this method in problems of modeling the mid-latitude
ionosphere and plasmasphere is described in detail in [1]. When treating phenomena in the high-latitude ionosphere,
it is necessary to solve numerically the transport equations for plasma tubes, whose length can increase or decrease
greatly as they drift across the magnetic field. This encounters a number of serious difficulties associated with
restructuring spatial networks and violation of the approximation, and ultimately gives rise to numerical instabilities.
The use of the flow run method with a preliminary transformation of the transport equations to a conservative form
showed that this method is always stable and, thus, the most effective when applied in modeling phenomena in
plasma tubes of a very large size.
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