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Abstract
We present the linear theory for the backward

wave oscillator generation regime of whistler waves
in the Earth's magnetosphere. Using a parabolic
profile of the magnetic field and a linear expression
for the resonant current in the case of a zero order
distribution function with a step discontinuity in the
velocity component parallel to the magnetic field,
we investigate the modes of the system by means of
a search procedure. The existence of at least one
mode exponentially growing in time is indicative of
absolute instability, and such modes have been
found. Therefore, earlier prediction of such a
regime, based on the homogeneous magnetic field
model, is confirmed. The dependence of growth
rates on the frequency mismatch and energetic
electron density has been studied. These results yield
the characteristic spatial profile and temporal growth
rate of small-amplitude whistler-wave disturbances,
which are likely to be the seeds for chorus
emissions.

Introduction
It is known that quasi-linear interactions of

energetic electrons with noise-like emissions having
an upper frequency cutoff lead to formation of a
step-like feature on the electron distribution function
in geomagnetic field-aligned velocities
(Trakhtengerts et al., 1986; Nunn and Sazhin, 1991;
Trakhtengerts et al., 1996). Trakhtengerts (1995)
suggested that such a velocity distribution provides
the backward wave oscillator (BWO) generation
regime in the magnetospheric cyclotron maser, i.e.,
the absolute instability of a quasimonochromatic
whistler wave in a near-equatorial region of the
Earth's magnetosphere, and studied its properties in
the approximation of a homogeneous magnetic field.
BWO regime has been suggested by Trakhtengerts
(1995, 1999) as a mechanism for chorus generation.
In this paper, we prove that the absolute instability
leading to the BWO generation regime is also
realized in an inhomogeneous magnetic field. For
that, we solve the linearized self-consistent
equations for the wave amplitude and energetic-
electron resonant current in a parabolic external
magnetic field. On this basis, we obtain the spatial
profile of an absolutely unstable whistler-mode wave

formed due to cyclotron resonant interactions and
calculate the growth rate of the absolute instability
as function of the energetic-electron density and
frequency.

Basic equations
We start from the equations for the cyclotron

resonant interaction of a quasi-monochromatic
whistler wave and a population of energetic
electrons. The equation for the slowly varying
amplitude of the wave magnetic field has the form
(Karpman et al., 1974; Nunn, 1974; Omura et al.,
1991)
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Nw = k c / ω is the whistler wave refractive index,
and J is the resonant current:
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The electron distribution function F can be
obtained using the method of characteristics for the
Vlasov kinetic equation. We assume that the
unperturbed distribution F0 has a step-like feature in
the equatorial parallel velocities v|| L:
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where Θ(x) is the Heaviside unit function, f(v|| L , I)
is the smooth part of the distribution, I = v⊥

2
 / ωH is

the 1st adiabatic invariant, ωH is the electron
gyrofrequency, p is the relative amplitude of the
step, and V* > 0 is the absolute value of the parallel
velocity on the step. The subscript "L" denotes the
values in the equatorial plane.

If we take into account only the step
contribution to the resonant current and assume the
medium to be weakly inhomogeneous, then the
linearized kinetic equation yields the following
differential equation for the resonant current J (see,
e.g., Trakhtengerts et al., 1999):
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where v* = [V
*
2 – I (ωH – ωHL)]1/2 is the parallel

velocity at some distance from the equator,
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is the mismatch from the cyclotron resonance,
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and I0 is the characteristic value of the 1st adiabatic
invariant.

Equations (1) and (5) determine the spatio-
temporal evolution of a small-amplitude whistler
wave at the linear stage of the instability in the
presence of the stepped distribution function. Our
goal is to show that such a wave-particle system can
be absolutely unstable.

The absolute instability means that there exists a
solution growing temporally at a given point inside
the domain of definition. For a spatially bounded
system, it also means that the output signal grows
from the noise level in the absence of an input
signal. Therefore, we should find a solution which
has zero amplitude A at the input and grows
exponentially in time at the output. Note that the
boundaries of the system are not strictly determined
in the case of a magnetospheric maser, so we place
them at arbitrary points far enough from the equator
and check that their position does not influence the
final solution. As we show below, the effective
system length is determined by the geomagnetic
field inhomogeneity. Hereafter, we assume parabolic
z-dependence of the magnetic field:
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where a = (21/2/3) R0 L, and R0 is the Earth radius.
It can be seen from (8) that the phase mismatch

due to the magnetic field inhomogeneity becomes of
order unity at a length
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For whistler waves in the Earth's magnetosphere,
lBWO / a ~ 10–3 << 1. This means that at distances
important for the BWO regime (i.e., several times
lBWO from the equator), we can neglect the variation
in any coefficient entering the BWO system of
equations, except the mismatch ∆.

It is convenient to normalize the spatial variable
z to lBWO and time t, to the time of flight
tBWO = lBWO / V* of resonant electrons through the
distance lBWO:

BWOBWO /   , / ttlz == τξ  (10) 

For analyzing the linear stability properties,
solutions of the form (A, J) ∝  exp(i Ω

^
 t) are of

relevance (Ω
^
 = Ω – iγ is the slow complex

frequency). Below, without loss of generality, we
assume Ω = 0, since a real addition to the wave
frequency is equivalent to a change in the mismatch
∆. In this case, excluding J from equations (1) and
(5), one obtains the single 2-nd order equation
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and primes denote differentiation over ξ. For the
parabolic magnetic field (8),
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numerical factor of order unity, and ω
~
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normalized wave frequency.
The appropriate boundary conditions for the

BWO equations (1) and (5) represent the absence of
the resonant current and a finite output wave
amplitude at the right-hand boundary of the
interaction region:
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Using Eq. (1), the second of these equations is
rewritten in terms of the wave amplitude as
( ) . /d/d gz
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We remind that the boundaries are specified here
at arbitrary points at the opposite sides from the
equator, far enough compared with the characteristic
scale length lBWO. This makes a significant
difference from the case of a homogeneous magnetic
field (Trakhtengerts, 1995), where the externally
imposed boundaries determine the scale length and,
hence, the instability parameters.

As was noted above, an absolutely unstable
solution of the system (1) and (5) or the equivalent
BWO equation (11) starts from zero at some point
inside the domain of definition and takes a finite
value at the output. Such a solution exists only for a
certain, if any, combination of parameters. To find
this solution and the corresponding parameters,
including the growth rate, we integrate Eq. (11)
backward in ξ from ξ = ξm = +l / lBWO (z = l). This
procedure is repeated for different values of the
growth rate γ and equatorial frequency mismatch δL,
until the amplitude reaches zero somewhere inside
the integration region. Reaching this condition
means that we have found the spatial profile of the
unstable wave and the corresponding growth rate.
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Figure 1. Spatial dependences of the wave
amplitude in BWO. Upper panel: stable solutions
(γ = 0) for the mismatch δL = 0.75 and two values
of the normalized beam density q; Lower panel:
unstable solutions for q = 0.5, δL = 0.75, and two
values of γ satisfying the dispersion relation.

Figure 2. Upper panel: The growth rate of the
absolute instability in the BWO as a function of the
mismatch δL at ω/ωHL = 0.25 and two values of q=1
and 0.5. The coordinate of the point ξ0 at which the
amplitude goes to zero is also plotted. Lower panel:
The maximum growth rate γ and the corresponding
optimum mismatch δopt as function of the
normalized "beam" electron density q
(ω/ωHL = 0.25).

Results
Figure 1 shows spatial profiles of the whistler-

wave amplitude in BWO. The upper panel
represents the case of stable convective
amplification (γ = 0), while the lower panel shows
exponentially growing solutions obtained using the
procedure described in the previous section. They
correspond to the same value of the normalized
mismatch δL and different values of the normalized
growth rate γ. In accordance with the above
discussion, they start from zero amplitude at some
distance z0 to the left from the equator and have an
exponential spatial decay at large ξ = z / lBWO.

These solutions are actually two unstable
"eigenmodes'' of BWO. They can be regarded as
lowest eigenmodes, since they have the smallest
numbers of the amplitude spatial maxima. Note that
different modes are localized in different space
regions (i.e., have different extent to negative z).
This makes a significant difference from a usual
boundary-value problem, in which the boundaries
determine the domain of definition for all modes. In

our problem, each mode has its own domain of
definition.

Figure 2 (upper plot) shows the dependence of
the growth rate on the frequency mismatch δL for
two fixed values of q. The left boundaries ξ0 for
each solution is shown here too. It is seen that the
frequency range of the absolute instability is limited
from both above and below: there is no solution of
eigenmode type at δL < 0.5 (note that this lower limit
almost does not depend on q), while such solutions
are damped (γ < 0) if δL exceeds some upper limit
which increases with q. For q ≤ 0.2, the instability
range vanishes, i.e., the latter inequality represents
the threshold of the BWO regime.

The lower panel in Fig. 2 shows the growth rate
maximized over δL and the corresponding optimum
value δopt as functions of q. Here, it is clearly seen
that the BWO instability occurs if q ≥ 0.2.

Figure 3 shows snapshots of the wave amplitudes
in BWO obtained by direct numerical integration of
the spatio-temporal equations (1) and (5) to check
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the above stability analysis. It is verified that the
unstable solutions grow exponentially in time, while
the spatial structure is preserved.

Discussion and conclusions
The main result of this paper is the proof of the

fact that the absolute instability of whistler waves
(BWO regime) in the presence of a step-like feature
on the electron distribution function exists in an
effectively unbounded system with an
inhomogeneous (parabolic) magnetic field. In this
case, the wave structure is determined by the
magnetic field inhomogeneity which dictates the
spatial scale of the unstable waves. Using numerical
calculations, we have obtained the spatial structure
of the modes exponentially growing in time and the
dependence of the growth rate on the plasma and
wave parameters.

This study confirms the idea of Trakhtengerts
(1995) that the BWO regime in an inhomogeneous
magnetic field is similar to that in a homogeneous
medium if the device length is replaced by the
characteristic scale length lBWO. Therefore, the
numerical estimates of the cited paper are also

confirmed. We conclude that the BWO regime is
indeed a good candidate to explain chorus
generation in the Earth's magnetosphere
(Trakhtengerts, 1999).
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Figure 3. Spatial profiles of whistler wave amplitude
at several subsequent times for the marginally stable
case q = 0.2 and unstable case q = 0.4. δL = 0.75 and
ω/ωHL = 0.25.


