ASYMMETRY IN THE SUBSTORMS DEVELOPMENT IN NORTHERN AND SOUTHERN HEMISPHERES OF THE EARTH

V.A. VELICHKO¹, R.N. BOROYEV¹, M.G. GELBERG¹, D.G. BAISHEV^{1,2}, J.V. OLSON³, R.J. MORRIS⁴, K. YUMOTO²

¹Institute of Cosmophysical Research and Aeronomy, 31 Lenin Ave.., 677891 Yakutsk, Russia; vitvel@ikfia.ysn.ru

The asymmetry in the intensity of H-component bays at the auroral stations, at the conjugate points of geomagnetic field in the northern and southern hemispheres caused by IMF B_y has been established. At $B_y < 0$ and $\left| B_z \right| / \left| B_y \right| < 1$, a bay amplitude in the geomagnetic field H-component in the auroral zone of southern hemisphere is more than in the northern one. In some events, at $B_y < 0$, the typical substorm in the southern hemisphere and geomagnetic disturbances in the northern hemisphere consisting of short-term variations of a small amplitude are observed.

One of the possible mechanisms of the found asymmetry is the irregular redistribution in hemispheres of currents forking from the magnetotail equator into the ionosphere.

²Department of Earth and Planetary Sciences, Kyushu University, 33, Hakozaki, Fukuoka 812-8581, Japan

³Geophysical Institute, University of Alaska, Fairbanks, Alaska 99775-7320, USA ⁴Australian Antarctic Division, Kingston, Tasmania 7050, Australia