LONG-TERM VARIABILITY OF THE GLOBAL OZONE LAYER

A.M. Zvyagintsev, Yu.A. Borisov, G.M. Kruchenitsky, and S.P. Perov
(Central Aerological Observatory, Dolgoprudny, Russia)

For the period 1979-1999 the rate of the decrease of yearly mean global column ozone is found to be about 2.5 % per decade. Such decrease in mid- and high-latitudes of the Northern Hemisphere is strongly due to the increase of frequency and magnitudes of negative column ozone anomalies in the period of 1987-1997. The Increase of column ozone to values that were typical for the middle of 1970s has been observed in mid- and high latitudes of the Northern Hemisphere during the last two years. Interannual column ozone variability in the Northern Hemisphere was largely associated with such regional climate process as the North Atlantic Oscillation (NAO) that is known to have a hemisphere or even global-scale influence on the climate. The column ozone variability in tropics was largely associated with solar activity, quasi-biennial oscillations, and, in some regions, El Nino/Southern Oscillation (ENSO). An unusually strong influence of the El Nino event 1997/98 on the ozone layer is likely to reflect global climatic changes in the Earth - ocean - atmosphere system.
Satellite-borne observations show that the ozone "hole" that was already clearly identified before the 1980s in the seasonal variation of column ozone over Antarctica at latitudes higher than 60 S, continues to increase or has reached its maximum (in 1999 it was only slightly smaller than in 1998). Cross-correlation analysis of column ozone deviations shows that formations of ozone anomalies in both hemispheres are co-ordinated on the global scale. The global increase of the column ozone during the last two years cannot be assigned to actions undertaken for elimination of anthropogenic effects on the ozone layer, because this increase is observed at the maximum abundance of stratospheric clorine and bromine (its maximum in the lower atmosphere was registered about 1994, while its maximum in the stratosphere was expected to peak before the year 2000).
 
 
 
 

SURFACE OZONE IN MOSCOW ENVIRONS: 1991-2000

A.M. Zvyagintsev and G.M. Kruchenitsky

(Central Aerological ObservatoryDolgoprudny, Moscow, Russia)

Regular surface ozone data from Dolgoprudny (forest-park suburb 25 km north of the centre of Moscow) obtained since March 1991, were analyzed. Surface ozone changed there from 0-1 ppb (that was typical of cold and foggy autumn nights) to 105 ppb (this maximum was observed on 14 July, 1999, during the period of dry and abnormally hot weather when woods and peatbogs around Moscow were burning). As the first approximation the surface ozone "norms" (averages smoothed for the observation period) may be well described by only a 1-year harmonic dependence on Julian day. The seasonal night-time surface ozone maximum is observed when the total ozone is at maximum too; its day maximum is observed almost two months later, close to the period of the seasonal temperature maximum.
The time series of surface ozone residuals (differences between the actual values and "norms") can be described as linear regression of the series of meteoparameters residuals. The most important meteoparameters are temperature and relative humidity at 14 h LT. The time series of the surface ozone residuals may be described by autoregression equation of the third order. The total efficiency of the regressive model for surface ozone residuals is more than 0.5; in particular, the efficiency of only the first two meteoparameters is about 0.30, while the autoregression efficiency is about 0.36. Such regression characteristics are similar to the ones obtained for stations in the West Europe.
Surface ozone (ppb) forecasting for the next day may be described by a regression sum of predicted temperature and relative humidity deviations. Surface ozone is the highest at high temperatures in summer; in winter its dependence on surface temperature is insignificant.
Most surface ozone characteristics in Dolgoprudny are similar to those observed at rural stations in West Europe but some percularities are also observed, e.g., surface ozone in Dolgoprudny is lower, while summer/winter and day/night ratios are higher. The correlation between the time series of surface ozone first residuals for Dolgoprudny and Preila, Lithuania (the stations are situated more than 1000 km apart at nearby the same latitude) is statistically significant; and it is the strongest if time lag equals one day.
Episodes of abnormally high surface ozone (up 75 ppb) in March-April are obviously associated with vertical air motions; some episodes (up 105 ppb) in June-September seem to be related with the photochemical processes that are similar to the ones observed in Los-Angeles smog.
 
 
 
 

SURFACE OZONE AND ATMOSPHERIC POLLUTION BY NITROGEN OXIDES ON THE KOLA PENINSULA

M.I. Beloglazov, A.Yu. Karpechko, G.N. Nikulin, S.A. Roumiantsev
(Polar Geophysical Institute, Apatity, Russia)

Surface ozone observations in the high-latitude regions are of great interest because strong seasonal differences in illumination conditions and the low level of solar radiation are properties of these regions in particular. Anthropogenic pollution of the atmosphere by nitrogen oxides is an important cause of surface ozone variations. To reveal the influence of illumination conditions on the interaction between nitrogen oxides and ozone, observations of these gaseous components have been conducted in the polar city Apatity at the centre of the Kola peninsula in autumn, winter and summer 1997-1999. Measurements were carried out in motor roads of this industrial city to obtain  high concentrations of nitrogen oxides. It is shown that: 1) the increase of nitrogen oxides concentration results in the decrease of ozone concentration in winter (in the polar night); 2) both the decrease of ozone concentration as well as its increase in summer (in the polar day) are possible. Measurements in autumn give intermediate behavior, which is closer to that in the polar night. The low level of solar ultraviolet radiation doesn’t permit the photochemical smog to be arisen. Acknowledgements: This work was supported by the grant N 99-05-64979  from the Russian Foundation for Basic Researches.
 
 
 
 

SIMULTANEOUS GROUND-BASED MICROWAVE SOUNDING OF OZONE IN N.NOVGOROD (56N, 44E) AND APATITY (67N, 35E)

A.A. Krasilnikov, L.M. Kukin, Y.Y. Kulikov, V.G. Ryskin (Institute of Applied Physics, N. Novgorod, Russia)
M.I. Beloglazov, G.N. Nikulin (Polar Geophysical Institute, Apatity, Russia)

We have prepared a report about the following experiment: simultaneous ground-based microwave measurements of stratospheric ozone (the altitude distribution for 22-60 km) over N. Novgorod (Center the European Russia) and Apatity (Kola Peninsula) during SOLVE campaign. The SAGE III Ozone Loss and Validation Experiment (SOLVE) is the measurement campaign designed to examine the processes which control polar to mid-latitude stratospheric ozone levels. SOLVE is an Arctic mission which will be conducted over the course of the 1999-2000 winter (November-March). Our observations of stratospheric ozone are based on the measurement of O3 emission in the rotational transition lines 4(0,4)__4(1,3) 101736.87 MHz and 6(0,6)__6(1,5) 110836.04 MHz. With this technique, observations do not depend on the sunlight, and may be conducted through moderately thick higher cloud cover, and are not significantly affected by aerosols.
A microwave device consists of a millimeter wave receiver and filter spectrometer. The receiver converts millimeter wave signals to lower "intermediate" frequency (IF) by heterodyning them with local oscillator. The IF signals are then processed by filter spectrometer. Detectors followed the spectrometer's filters. The detector outputs are digitized, integrated and stored in system computer.
The altitude profiles of the ozone density are retrieved from microwave spectral data by model-fitting program. In this model one considers that the intensity of thermal emission of the sky obtained is the result of stratified atmosphere in which a constant pressure, a temperature and an absorbing molecule density characterize every layer. We use the pressure and temperature profiles from the combination of real data and the middle reference model derived from satellite data. The upper limit on uncertainty in the ozone altitude distribution (range 22-60 km) is about 20%.
This work was supported by Russian Foundation for Basic Research (Grant 99-05-65467)
 
 
 
 

INVARIABILITY OF TOTAL OZONE CONTENT UNDER SOLAR PROTON EVENTS

V.C. Roldugin (Polar Geophysical Institute, Apatity, Russia)

The changes of the total ozone content in high-latitude point is examined on TOMS' data for 19 solar proton events and for 21 Forbush decrease events. For both phenomena any statistical significant ozone changes are not revealed.
Acknowledgements: This work was supported by the grant N 99-05-64979 from the Russian Foundation for Basic Research.
 
 
 
 

INTERACTION OF SURFACE OZONE WITH ANTHROPOGENIC POLLUTION IN HIGH LATITUDE INDUSTRIAL AREA DURING THE POLAR DAY

S.A. Roumiantsev, V.C. Roldugin. (Polar Geophysical Institute, Apatity, Russia)

The rate of surface ozone generation is determined by the precursors and nitrogen oxides concentrations as well as the intensity of solar ultraviolet (UV) radiation in the lower troposphere. Changing flux of solar radiation during the day and night may result in different routines of ozone generation depending on precursor and nitrogen oxides contents. Particularly this fact is noticed in the industrial areas where the intensive pollution of the air exists. The process of ozone generation in different illumination conditions is numerically modeled within limits of the simplified box model. The variability of 9 gaseous components , including O3 , NO, NO2 , is found by integrating of chemical kinetic equations. These components participate in 30 chemical reactions, which are important for ozone generation and losses. Dynamics of ozone content are determined by dry deposition and chemical reactions. Atmospheric pollution is described by model where the pollution is not equal to zero just during working day. The photodissociation is represented by function of local time, the parameter of which is value of dissociation rate at the maximum of solar elevation angle in midday. The pollution results in both an increase of ozone concentration as well as its decrease. Considering ozone concentration at the end of working day, it is shown that this concentration increase takes place at small rates of the pollution and decrease takes place at big rates in the absence of organic peroxy radicals under solar illumination typical for the polar day. Under nonzero organic peroxy radicals concentration the increase of ozone takes place at the end of working day as a rule. Acknowledgements: This work was supported by the grant N 99-05-64979  from the Russian Foundation for Basic Research.
 
 
 
 

TOTAL OZONE OBSERVATIONS IN APATITY DURING 1998 - 1999 INCLUDING SOLAR ECLIPSE 11 AUGUST 1999

G.N. Nikulin, V.C. Roldugin, M.I. Beloglazov and A.Yu. Karpechko
(Polar Geophysical Institute, Apatity, Russia)

The routine measurements of the total ozone coupled with UVA and UVB measurements have been carried out in Apatity (68 N, 33 E) by glass filter device M-124 in March 1998. The comparison of obtained ozone data with such data of neighbor Murmansk achieved their coincidence with small excess in Murmansk. The observations in Apatity during 1998 and 1999 revealed that the winter total ozone level exceeded significantly the typical value for the second half of 80-ies – the first half of 90-ies in Murmansk. In March 1998 the excess of the ozone in Apatity over the Murmansk value in 1996 was about 30 DU, and in March 1999 it was 110 DU. In summer period there is no essential difference between ozone values in Apatity-98, -99 and Murmansk-96.
The ratio of UVA and UVB displayed the linear dependence from elevation angle of the Sun with the coefficient equal to 0.0005.
During the solar eclipse of 11 August 1999 the total ozone measurements have been carried out along with UVA and UVB measurements. Despite the obvious decrease of UV radiation, the ozone variation did not overstep the limits of usual changes coupled with error level: the 10 DU linear increase was observed during two hours period of the eclipse. Acknowledgements: This work has been supported by the grant N 99-05-64979  from the Russian Foundation for Basic Research.
 
 
 
 

APPEARANCE OF COLORED POLAR STRATOSPHERIC CLOUDS OVER KOLA PENINSULA AFTER ROCKET LAUNCHES

V.C. Roldugin, A.V. Roldugin and L.A. Pershakov (Polar Geophysical Institute, Apatity, Russia)

The prominent polar stratospheric clouds was observed over Kola Peninsula several hours after the military rocket launch in 17 November 1999 similar to 17 January 1997 event. This iridescent cloud was seen southward, in solar direction and was almost immovable during several hours. Their height is appreciated at 15 km nearly by time of disappearance in Earth shadow. The clouds were situated over mountains. The phenomenon seems to be caused by Mie scattering of the solar radiation on small droplets of HNO3 condensed during upward motion in lee waves. Acknowledgements: This work has been supported by the grant N 99-05-64979  from the Russian Foundation for Basic Research.
 
 
 
 

CHANGES OF ATMOSPHERIC AEROSOL DENSITY AFTER EARTH TRANSITS OF THE HELIOSPHERIC CURRENT SHEET

V.C. Roldugin (Polar Geophysical Institute, Apatity, Russia)
B.A. Tinsley (Center for Space Sciences, University of Texas at Dallas, Richardson, USA)

The variations of optical density of atmospheric aerosols in 369 nm, atmospheric spectral transparency in 530nm and Junge index at 8 stations of Russian Ozonometric Network, situated to the North from 55 deg, were investigated by superposed epoch analyses for time interval 6 days before - 6 days after heliospheric current sheet crossings. Two periods were chosen: 1983-1986 after El Chichon eruption, and 1978-1982 & 1987-1989 without volcanic activity. It was found that two days later HCS crossing the aerosol extinction decreases and the transparency increases for the period of 1983-1986, and this effect does not take place for another period. We connect it with the decrease in relativistic electrons following the HCS crossing.
The determining size of aerosols Junge index does not depend on HCS crossing, but it is smaller after El Chichon eruption. In 1983-1986 the transparency is higher and the aerosol extinction is smaller than in another period, that may be connected to solar activity effect. Acknowledgements: This work was supported by the grant N 99-05-64979  from the Russian Foundation for Basic Research.
 
 
 
 

THE ROLE OF AIR MASS TRANSPORT FOR SURFACE OZONE CONCENTRATION ON KOLA PENINSULA

A.Yu. Karpechko (Polar Geophysical Institute, Apatity, Russia)
O.A. Tarasova (Moscow State University, Moscow, Russia)

Observations of surface ozone concentration (SOC) from Lovozero, Kola Peninsula obtained during 1999, were analyzed. Seasonal behavior of SOC is similar to those observed on many removal sites in Northern Hemisphere with maximum in April and minimum in August-September. To investigate the role of transport for SOC in the Kola Peninsula, some events of anomaly high and low SOC in 1999 on Lovozero are considered in conjunction with back trajectories and synoptic situations. It is shown that all three springtime low SOC events examined are associated with advection of cold air masses from Kara Sea region on back side of cyclones. Some low SOC events in autumn could not be explained by long-range transport and the local conditions appeared to be a more significant factor. The highest SOC event with maximum hourly averaged SOC up to 55 ppb occurred on April 20-22 when anticyclone was situated southeastward from the Kola Peninsula and brought warm and dry continental air mass. In July, some high SOC events were revealed, with maximum hourly averaged concentration exceeding 40 ppb, when warm air masses were transported from Western Europe as appeared from back trajectories analysis. Seven different transport patterns and their relation with SOC in Lovozero were revealed in spring 1999. It-s shown that as much as 31% of total variance of SOC in spring 1999 may be explained by transport differences. Acknowledgements: This work was supported by the grant N 99-05-64979 from the Russian Foundation for Basic Research.
 
 
 
 

THE SOLAR ACTIVITY IS CONTROLLING FACTOR OF THE TRACE GASES AND THE SOLAR-RADIATION IN THE LOW ATMOSPHERE

I.A. Plenkina (Institute of Physics, Saint-Petersburg University, St Petersburg, Russia)

The processes connecting the solar activity phenomena with the low atmosphere disturbances are traced. The influence of long-term variation of solar activity and galactic cosmic rays (GCR) intensity on the solar radiation input into the low atmosphere and the trace gases in low atmosphere was investigated.
The solar-radiation is controlled in low atmosphre by the state of the cloudiness, variations of which can be one of the most important factors regulating the dynamic of the low atmosphere. Thus, one may suppose, that GCR influences differently on the cloudiness state and therefore on the dynamic of the low of atmosphere in high and low latitudes. Also adduce the results of the influence of solar activity on variation concentration of the trace gases in the low atmosphere.
 
 
 
 

INFLUENCE OF THE LARGE-SCALE ATMOSPHERIC CIRCULATION ON MID-LATITUDE TOTAL OZONE IN THE NORTHERN HEMISPHERE

G.N. Nikulin (Polar Geophysical Institute, Apatity, Russia)
R.P. Repinskaya (Russian State Hydrometeorology University, St. Petersburg, Russia)

It is shown that mean monthly mid-latitude anomalies of the total ozone (TOMS, 1979-1992) were closely connected to large-scale circulation anomalies in the troposphere and lower stratosphere. In winter time the second empirical orthogonal function (EOF) of total ozone has the spatial structure as the structure of Arctic Oscillation (AO), defined by the first EOF of the sea-level pressure (SLP). This structure involves a feedback between the Arctic and parts of the surrounding zonal ring and stretches from ground to 50 mb level. There is a negative correlation between time coefficients associated with the first EOF of SLP and the second EOF of the total ozone. Similar anticorrelation between the index of Northern Atlantic Oscillation (NAO) and winter mean (December-March) anomalies of total ozone is found for the longer sequence of data from ground-based stations.  When NAO index is high, the total ozone decrease is observed at stations situated within the limits of the mid-latitude zonal ring. Such relation is not observed at the stations outside this ring. Negative trends of total ozone may be related to intensification of AO and its regional mode – NAO that started in the late seventies. The weakening of AO and NAO after 1995 have induced the increase of total ozone content in mid-latitudes of the Northern Hemisphere, which was especially noticeable in 1998-99.
Acknowledgements: This work was supported by the grant N 99-05-64979  from the Russian Foundation for Basic Research.
 
 
 
 

STATISTICAL ANALYSIS OF DAILY TOTAL OZONE VARIATIONS AND  300 hPa GEOPOTENTIAL HEIGHT OVER EUROPEAN REGION

G.N. Nikulin (Polar Geophysical Institute, Apatity, Russia)
R.P. Repinskaya (Russian State Hydrometeorology University, St. Petersburg, Russia)

Spatial and temporal characteristics of daily total ozone (TO) fields, obtained from TOMS (1980-1992), and 300 hPa geopotential height (H300) over Scandinavia, North-West Russia (60.5° N-70.5° N, 0° W-51° W) and Europe, Central part of Russia (48.5° N-58.5° N, 0° W-51° W) were examined using the empirical orthogonal function (EOF) analysis. H300 was chosen because it is a good indicator of upper tropospheric and lower stratospheric dynamics. Southern region borders were defined by the condition of TO data availability during the year. In northern region TO data at all grid points are available only from March to October. For both fields the first 10 expansion components account for more than 90% of total variance with the maximum in winter and the minimum in summer. Mesoscale modes (3-5) are unstable during the year while large (1,2) and small (6,7) scale modes do not change. There is a resemblance between the five leading EOF of TO and the same EOF of H300. The highest correlation between the first five expansion coefficients for total ozone and H300 are observed in the summer season. The high correlation is associated with summer tropospheric baroclinic disturbances. In winter months the correlation decreases, which may be related to the influence on total ozone dynamical perturbations in upper and middle stratosphere. Taking into account the stability of the first two EOF of TO during the year, one can suggest that in months of TO data absence over northern region the first and second EOF of TO have the same spatial structure as in other months.
Acknowledgements: This work was supported by the grant N 99-05-64979  from the Russian Foundation for Basic Research.
 
 
 
 

ENHANCEMENT OF THE NIGHT INFRARED CO2 AIRGLOW DURING A SOLAR PROTON EVENTS

Ogibalov V.P., Khvorostovsky S.N., and Shved G.M. (Department of Atmospheric Physics, St. Petersburg State University, St. Petersburg-Petrodvorets, Russia)

The first calculations of enhancement of emission in the 4.3 micron CO2 band due to a solar proton event are presented. The populations of the CO2 vibrational states were evaluated with the detailed model consisting of 321 excited vibrational states belonging to seven CO2 isotopes. The new source of excitation for N2(1), O2(1) and CO2(v3) vibrational states was used in the model. The calculations of night radiance were made for a set of initial proton spectra. In particular, the total zenith radiance in the 4.3 micron CO2 band increases in the 70-110 km altitude range for the source corresponding to the August 1972 solar proton event. The largest increase is about the factor of 4 to 90 km.
 
 
 
 

SPRINGTIME LOW SURFACE OZONE EVENTS AND THEIR RELATION WITH METEOROLOGICAL CONDITIONS IN ARCTIC REGION

A.Yu. Karpechko (Polar Geophysical Institute, Apatity, Russia)

Springtime low surface ozone concentration is a common feature of Canadian Arctic region. It’s widely believed now that the cause of such events is destruction of ozone by bromine in boundary layer. Sources of bromine in polar spring are not well understood. It may be either sea salt aerosols or organic bromine compounds. We consider meteorological conditions, which are favorable to low surface ozone events. The row of daily mean ozone concentration for Point Barrow (1973-1996) was used for analysis. It’s shown that low springtime surface ozone events (< 10 ppb) occur more frequently when wind blows from sea. This situation is most pronounced in April when mean ozone concentration is less as much as factor 2.5 at sea-breeze winds than at off-shore ones. There is not such behavior in other seasons. In autumn, ozone concentration is less when wind blows from land. In winter and summer relation between ozone concentration and wind direction is weak. Investigation of ozonesonde data for Resolute and Alert stations confirms that low ozone concentration in Arctic observed mainly at on-shore winds. It’s true for surface and 975 mb levels for Resolute and up to 850 mb for Alert. It's also revealed that ozone concentration increases as wind speed increases in all seasons, especially in spring. We examine relation between ozone concentration and temperature gradient within layer 925-850 mb. It’s shown that strong temperature inversion favors low surface ozone events in spring and ozone concentration is higher in neutral stratification. This behavior is most marked in April. There are opposite situations in summer and autumn when mean ozone concentration is higher in temperature inversion than in neutral stratification. In winter, relation between temperature gradient and ozone concentration is weak. Acknowledgements: This work was supported by the grant N 99-05-64979  from the Russian Foundation for Basic Research.
 
 
 
 

ABOUT CONNECTION BETWEEN VARIATIONS OF OZONE AND TEMPERATURE IN MID-STRATOSPHERE ON THE RESULTS OF MICROWAVE MEASUREMENTS

E.N. Griazina, Yu.Yu. Kulikov (The Institute of Applied Physics, N.Novgorod, Russia)

It is proved, that a radiation balance of a stratosphere and its temperature dependin a large degree on an absorption of ultra-violet radiation of the Sun by an ozone, and that ozone should influence and circulation of a stratosphere. There are three global parameters, which the geographical and temporal distribution small gas component depends on. At first, chemical responses, which bring in the contribution to their formation and destruction, secondly, temperature, which determines velocities of many chemical processes, and, at last, atmospheric dynamics, which causes transposition of chemical components. In actual atmosphere there is force a inverse connection between a variation of a velocity of chemical responses and variation of temperature connected to a variation of concentration small gas components. If the variation of concentration of an ozone takes place (for example, in an outcome of a chemical variation happens during the phenomenon of absorption in a polar cap), it is possible to calculate an expected variation of temperature.
The statistical analysis of datas obtained in Institute of Applied Physics by a method of microwave radiometry and datas of the satellite EARTH PROBE with the gear TOMS onboard, and also temperature profiles NOAA (National Oceanic and Atmosphere Administration http: // wesley.wwb.noaa.gov) since November, 1998 till April, 1999 has given the following conclusions:

1. In the lower stratosphere has place direct connection between temperature and content of an ozone.
2. In some moment the violation of a direct correlation is registered which is probably explained by a variation of atmosphere circulation.
3. The degree of influence of an atmospheric ozone on a thermal balance of atmosphere is confirmed.

In general, the small constituent of atmosphere as ozone is, has a marked influence on its properties and can serve for diagnosis of horizontal and vertical air motions.
 
 
 
 

МЕТОДЫ ОБРАБОТКИ МИКРОВОЛНОВЫХ СПЕКТРОВ ОЗОНА ДЛЯ ОЦЕНКИ ЕГО ВЕРТИКАЛЬНОГО РАСПРЕДЕЛЕНИЯ

С.В. Галкин, Ю.Ю. Куликов (Институт Прикладной Физики РАН, Н.Новгород, Россия)

Малые газовые составляющие атмосферы играют огромную роль для поддержания жизни на Земле. Поэтому мониторинг состояния малых газовых составляющих является одной из важных задач физики атмосферы. Одним из методов мониторинга озона является зондирование атмосферы в миллиметровом диапазоне длин волн. Достоинствами этого метода являются: 1. наличие достаточно интенсивных и слабо перекрывающихся в информативной области спектральных линий озона; 2. существенно меньшим влиянием аэрозоля на радио характеристики; 3. выполнимость условия локального термодинамического равновесия до высот ~100 км; 4. возможность непрерывного по времени мониторинга озона. Непрерывный по времени мониторинг озона возможен при условии существования качественных систем обработки результатов. Целью данной работы стало создание такой системы обработки спектров атмосферных линий озона, полученных с помощью микроволновой спектроскопии. Новая система позволяет существенно сократить время обработки спектров. Решение обратной задачи осуществлялось при численном моделировании радиометрического эксперимента. Т.е. происходил подбор параметров трехпараметрической аналитической зависимости концентрации озона от высоты, при которых расчетный спектр линии наиболее точного приближается к полученному в результате эксперимента спектру. Мерой приближения расчетного спектра к экспериментальному спектру служила сумма квадратов. Программа позволяет использовать как модельные профили давления и температуры от высоты, так и реальные данные. Для нахождения минимума этой функции был применен метод Ньютона. Данный метод обладает следующими преимуществами:

1. является устойчиво локально сходящимся к точке минимума;
2. обладает высокой q-квадратичной скоростью схождения;
3. сохраняет высокую скорость схождения для любых функций.

Таким образом, новая система обработки спектров атмосферных линий озона может обеспечить непрерывную обработку информации и постоянное пополнение архива данных о концентрации озона.
 
 
 
 

СУТОЧНЫЕ ВАРИАЦИИ МЕЗОСФЕРНОГО ОЗОНА ПРИ НАЛИЧИИ СЕРЕБРИСТЫХ ОБЛАКОВ

Ю.А. Рабина, Ю.Ю. Куликов (ИПФ РАН, Нижний Новгород, Россия)

При подготовке наблюдений солнечного затмения 11 августа 1999г. в ИПФ РАН в июне проводились наблюдения суточных вариаций озона на высотах 20-60 км посредством микроволновой радиометрического зондирования верхней атмосферы. Метод основан на наблюдении резонансных линий молекул, имеющих вращательные спектры в диапазоне мм-волн. Особенность этого метода заключается в значительно меньшей зависимости качества измерений от погодных условий и аэрозольной компоненты атмосферы в отличие от наблюдений в оптическом и инфракрасном диапазонах длин волн. Обработав полученные спектры и проанализировав поведение концентрации озона верхней атмосферы в периоды с 1 по 4, с 7 по 10 и 15-16 июня, были отмечены изменения суточных колебаний О3 ночью 15-16 июня. После захода Солнца концентрация озона в мезосфере увеличивается, и повышенная ее величина сохраняется вплоть до восхода Солнца. Ночью 15-16 июня возрастание концентрации озона было зафиксировано, во-первых, значительно раньше, во-вторых, временной интервал суточного максимума озона увеличился. Независимо от наших наблюдений в астрономической обсерватории Нижегородского Государственного Педагогического Университета А. Вериным было зафиксировано наличие серебристых облаков высокой интенсивности с 0 часов 10 минут по 3 часа 15 минут 16 июня. Гипотетически такое изменение суточных колебаний озона возможно связано с появлением серебристых облаков над Нижним Новгородом. Известно, что наблюдается прямая зависимость между появлениями серебристых облаков и интенсивностью полос излучения гидроксила и водяного пара в мезосфере [1,2]. Кроме того, в последнее время появились сообщения о связи вариаций озона с серебристыми облаками [3].

Литература:
1. Т.И. Торошелидзе, Гидроксил в мезосфере по наблюдениям сумеречного свечения атмосферы, в кн. Физика мезосферных (серебристых) облаков // Рига: Зинатне, с.41-42, 1970 г.
2. В.И. Красовский, А.И. Семенов, В.П. Соболев, Н.Н. Шефов, О водяном паре в верхней атмосфере, Геомагнетизм и аэрономия, 21, ь2, с.373,1981 г.
3. Ю.А. Николаев, П.А. Фомин, О природе серебристых облаков и озонного слоя Земли, Физика горения и взрыва, 31, ь4, с.3-13,1997 г.
 
 
 
 

ВОЗДЕЙСТВИЕ УФ РАДИАЦИИ СОЛНЦА НА ОЗОНОВЫЙ СЛОЙ ВО ВРЕМЯ ЧАСТИЧНОГО СОЛНЕЧНОГО ЗАТМЕНИЯ

Рябинина О.О., Куликов Ю.Ю (ИПФ РАН, Нижний Новгород, Россия)

В период полного солнечного затмения озоновый слой атмосферы в полосе затмения около двух часов испытывает воздействие переменного потока озоно-активной УФ радиации с длинами волн 200-400 нм. При этом изменяется спектральный состав озоно-активной солнечной радиации, падающей в полосе затмения на озоновый слой, что обусловлено потемнением солнечного диска к краю. Эти изменения значения и спектрального состава УФ радиации в период солнечного затмения могут иметь двоякие последствия: 1) Вызвать действительные колебания общего содержания озона, поскольку озон в силу своей фотохимической природы тесно связан с солнечной радиацией. 2) Вызвать фиктивные колебания измеряемых значений общего содержания, связанные с методикой его измерения, при которой используется УФ радиация, идущая в период затмения не от всего, а от части солнечного диска. Перед нами стояла задача провести наблюдения за вариациями озонового слоя над Нижним Новгородом с помощью оптического озонометра М-124 и уникального микроволнового спектрометра, который получает вертикальный профиль озона на высотах от 20 до 60 км. Затмение состоялось 11 августа 1999 года (максимальная фаза (0.63) наблюдалась в 15.15) Анализируя результаты данных, полученных 9,10,11 августа 1999 года с помощью озонометра М-124 , не были замечены изменения кривой ОСО. По данным микроволнового спектрометра на 11 августа легко заметить возрастание кривой зависимости интенсивности линий озона от времени. При обработке спектров был зафиксирован рост концентрации озона (около 30%) на высоте 60 км. В результате анализа данных наблюдений за поведением озона в период солнечного затмения установлено:

1) Имеет место крупномасштабное воздействие переменного по времени и изменяющегося по спектральному составу солнечного излучения на озоновый слой.

2) Наблюдение небольших изменений общего содержания озона в момент максимальной фазы затмения, возможно является естественным откликом озона на изменение спектрального состава излучения, но может оказаться фиктивным, вследствие инструментальной погрешности.

3) В результате микроволновых наблюдений за поведением озона в атмосфере во время солнечного затмения появляется возможность проверить достоверность основных положений фотохимической теории и определить эффективность фотохимических моделей.