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Abstract.Formula for the parallel current density in the case of magnetohydrostatic plasma with anisotropic pressure
is derived. This formula is deduced from the magnetohydrostatic equations without any additional assumptions. This
formula expresses the parallel current density in a fixed point of the Earth’s magnetosphere only in terms of the
parameters occurring in the system of magnetohydrostatic equations. In the case of isotropic pressure the derived
formula coincides with the well-known Vasyliunas–Tverskoy formula.

1. Introduction

In the case of plasma with isotropic pressure Vasyliunas [1970] and Tverskoy [1982] derived the formula for the parallel
current density from the magnetohydrostatic equations. This formula expresses the parallel current density in a fixed
point of the Earth’s magnetosphere in terms of pressure gradient in this point and distribution of the absolute value
of magnetic field along the magnetic field line. Meanwhile, it is well-known that the pressure tensor is essential
anisotropic with ratio p⊥/p∥ ≈ 2 in the Earth’s magnetosphere at the distance from the Earth less then 10RE [Lui

and Hamilton, 1992]. In this paper we consider the problem of generalization of the Vasyliunas–Tverskoy formula for the
case of anisotropic pressure. It should be noted that in papers by Heinemann [1990] and Heinemann and Pontius [1991]
the formula for the parallel current density were deduced from the magnetohydrostatic equations for plasma with
anisotropic pressure and additional assumptions about special empirical representations for parallel and orthogonal
pressure. As a result of this additional assumptions the deduced formulae for the parallel current density contain
some empirical parameters which don’t occur in the input system of one-fluid nondissipative magnetohydrodynamic
equations.

In this paper we deduced the formula for the parallel current density only from the magnetohydrostatic equations
for plasma with anisotropic pressure without any additional assumptions. As a result we express the parallel current
density only in terms of the parameters occurring in the input system of one-fluid nondissipative magnetohydrodynamic
equations.

2. The basic equations

The system of one-fluid nondissipative magnetohydrodynamic equations [Chew et al., 1956] can be considered for
plasma with both isotropic pressure and anisotropic pressure. Equation of motion of this system has the following
form:

ρ

(
∂ v

∂ t
+ (v ,∇)v

)
= div P̂ + [ j ,B ] . (1)

Here ρ is the mass density of plasma; v is the hydrodynamic velocity of plasma; j is the vector of electric current
density; P̂ is the pressure tensor; B is the magnetic induction. If the inertial terms, situated in the left–hand side
of the equation (1) are small in comparison with the terms, situated in the right–hand side of this equation, one can
consider the magnetohydrostatic equation

[ j ,B ] = −div P̂ (2)

as a zero approximation for the equation (1). In the case of plasma with anisotropic pressure the pressure tensor has
the form

P̂ = −p⊥Î −
(
p∥ − p⊥

)
b⊗b , (3)

where Î is the identity tensor; b = B/B is the unit vector in direction of the B ; B = |B | ; b⊗b is the dyadic
tensor, formed by the vector b ; p∥ and p⊥ are parallel and orthogonal plasma pressure, respectively. From (3) it

follows that
div P̂ = −∇⊥p⊥ −

(
p∥ − p⊥

) [
(b ,∇)b + bdivb

]
− b

(
b ,∇p∥

)
, (4)

where ∇⊥ = ∇− b (b ,∇) is the orthogonal to the B component of the gradient operator ∇ . For convenience, we

denote by
a = −div P̂ + b (b ,div P̂ ) = ∇⊥p⊥ +

(
p∥ − p⊥

)
(b ,∇)b (5)

the orthogonal to the B component of the vector field (−div P̂) . Substitution of the equality (4) into the equation
(2) gives the following equations:

a = ∇⊥p⊥ +
(
p∥ − p⊥

)
(b ,∇)b = [ j ,B ] ,

(
p∥ − p⊥

)
divb = −

(
b ,∇p∥

)
. (6)
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Also we shall use the Maxwell equation
divB = 0 (7)

and the equation of current continuity
div j = 0 . (8)

Equations (6)–(8) form the system of magnetohydrostatic equations for plasma with anisotropic pressure.

3. Formula for the parallel current density in the case of the pressure anisotropy

Formula for the parallel current density j∥ = (j ,b) can be deduced from the equations (6)–(8) without any additional

assumptions. Let the Q be a bounded region (i. e. open bounded set) in space R3 . For convenience, we assume that
the field B in the region Q satisfies the following simple natural condition executed in the Earth’s magnetosphere
by obvious way.

Condition 1. I. The field B(x) in the region Q is smooth enough and |B(x) | ≥ B0 > 0 for all x ∈ Q .
II. In the region Q smooth enough surface Σ exists, such that
1) the Σ separates the region Q in two regions Q+ and Q− : Q = Q+

⋃
Σ
⋃
Q− ;

2) for an arbitrary point x ∈ Q the passing through x magnetic field line intersects surface Σ in the unique point
z(x) remaining in the region Q .
3) magnetic field line is not tangent to the Σ , that is

∣∣ (n(x) ,b(x) ) ∣∣ > α0 > 0 for all point x ∈ Σ , where n(x)
is the unit normal to the surface Σ .

In the Earth’s magnetosphere in the capacity of region Q we ought to consider the bounded region with external
boundary formed by closed magnetic field line and with internal boundary formed by the upper boundary of the
ionosphere. We ought to consider the equator plane in the capacity of the surface Σ . Let the field B on the surface
Σ be directed into Q+ . Then region Q+ is situated North of the equator plane in the Earth’s magnetosphere.

Equation (7) allows us to introduce curvilinear coordinates ξ1 , ξ2 and ξ3 connected by natural way with the
magnetic field B :

B = [∇ξ1 ,∇ξ2 ] . (9)

We denote by g k =
∂ x

∂ ξk
and gk = ∇ξk the vectors of the accompanying covariant basis and of the dual contravariant

basis, respectively. This vectors are connected among themselves by the following standard relations :

(g k ,g
i) = δ i

k , i, k = 1, 2, 3 , (10)

where δ i
k is the Kronecker symbol. Also we denote by

gi k = (g i ,g k ) , g i k = (g i ,g k ) and g = det ∥ gi k ∥ =
(
g1 , [g2 ,g3 ]

)2
=

(
g1 , [g2 ,g3 ]

)−2
(11)

covariant and contravariant components of the metric tensor and its determinant, respectively. For an arbitrary vector
field w(x) , we denote by

wk = (w ,gk) and wk = (w ,gk) (12)

its covariant and contravariant components, respectively. Also we denote by y(s ,x) the solution of the following
Cauchy problem :

∂ y(s ,x)

∂ s
= b(y(s ,x) ) , y(0 ,x) = x . (13)

Let us introduce the length σ(x) of the magnetic field line from the surface Σ to the point x by the formula

y(−σ(x) ,x) = z(x) ∈ Σ , which means that y(σ(x) , z(x) ) = x . (14)

From (14) it follows that, if point x ∈ Q+ , the length σ(x) > 0 , and, if point x ∈ Q− , the length σ(x) < 0 .
Now we can formulate the result of this paper in the form of the following proposition.

Proposition 1. Let functions p∥(x) , p⊥(x) and vector fields B(x) , j(x) be smooth enough in the region Q and

satisfy here the equations (6)–(8). Let also the condition 1 be executed. Then the parallel current density j∥ = (j ,b)

in the region Q is determined by the following formulae :

j∥(x) = j∥(z(x))
B(x)

B(z(x))
+

(
b(x) , [∇W1(x) ,∇ξ1(x) ]

)
+

(
b(x) , [∇W2(x) ,∇ξ2(x) ]

)
, (15)
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where the point z(x) is defined by (14) and functions Wk(x) are defined by formulae

Wk(x) = ±
x∫

z(x)

fk ds =

0∫
−σ(x)

fk(y(s ,x) ) ds =

σ(x)∫
0

fk(y(s , z(x) ) ) ds , x ∈ Q± , k = 1, 2 , (16)

where y(s ,x) is the solution of the Cauchy problem (13) and functions fk(x) are defined by formulae

f1(x) =
a1
B

=
a1 g22 − a2 g12

B 3 , f2(x) =
a2
B

=
a2 g11 − a1 g12

B 3 . (17)

Here the vector field a(x) is defined by formula (5) and components of the a(x) and the metric tensor are defined
by the formulae (11), (12).

For example, the formulae (15)–(17) can be used for determination of the parallel current density in the Earth’s
magnetosphere in that case, if there are empiric models of B , p∥ and p⊥ in the magnetosphere, satisfying the second

equation in (6), and there is empirical model of the parallel current density in the equator plane.

4. The case of isotropic pressure

In the case of plasma with isotropic pressure the pressure tensor has the form P̂ = −p Î . Then div P̂ = −∇p ,
and equation (2) takes the form

∇p = [ j ,B ] . (18)

It means that in formulae (15)–(17) we are to consider the case a = ∇p . Since in the capacity of the first Euler
potential ξ1(x) one can choose an arbitrary first integral f(x) of the system (13), that is an arbitrary solution of the
equation

(B(x) ,∇f(x) ) = 0 , x ∈ Q , (19)

then taking into account equation (18) we can choose ξ1(x) = p , that gives g1 = ∇ξ1 = ∇p = a . Substituting
this and (10) into the (12) we have the identities: a1 = (g1 ,g1 ) ≡ 1 , a2 = (g1 ,g2 ) ≡ 0 .
Then substituting this identities into the (15)–(17) we receive the following formulae

j∥(x) = j∥(z(x))
B(x)

B(z(x))
+
(
b(x) , [∇V (x) ,∇p(x) ]

)
, V (x) = ±

x∫
z(x)

ds

B
=

0∫
−σ(x)

ds

B(y(s ,x) )
for x ∈ Q±, (20)

where y(s ,x) is the solution of the Cauchy problem (13).
Formulae (20) generalize the formulae for the parallel current density received by Vasyliunas [1970] and Tverskoy

[1982]. Vasyliunas [1970] derived the formula

j∥(x) = f(x)B(x) +
(
b(x) , [∇V (x) ,∇p(x) ]

)
,

where function f(x) satisfies the equation (19). Tverskoy [1982] derived the formula

j∥(x) =
(
b(x) , [∇V (x) ,∇p(x) ]

)
for the case, when the magnetic field is symmetrical relatively the equator plane. In this case the parallel current

density in the equator plane identically equals zero, as it follows from the Maxwell equation j =
1

µ0
rotB .

5. Scheme of the proof of the formula for the parallel current density in the anisotropic case

Our method is a generalization of the method used by Tverskoy [1982] for isotropic case. Let functions ξ1(x)
and ξ2(x) be some Euler potentials of the B , that is (9) be satisfied. Let the point x0 ∈ Q+ . Let z(x0) be
the point of intersection of the magnetic field line passing through the x0 with the surface Σ . Let us consider

a fine flux tube K bounded by the four surfaces ξ1(x) = ξ1(x0) ±
1

2
∆ξ1 , ξ2(x) = ξ2(x0) ±

1

2
∆ξ2

and two orthogonal with respect to the B planes, passing through the points x0 and z(x0) . We denote by Γ±
k for

k = 1, 2 the lateral surfaces of the flux tube K lying on the surfaces ξk(x) = ξk(x0) ±
1

2
∆ξk , respectively; we

denote by J±
k the current flowing out from the K through the surfaces Γ±

k , respectively; we denote by Γ±
0 the bases

of the flux tube K passing through the points x0 and z(x0) , respectively; we denote by J
±
∥ the current flowing out
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from the K through the bases Γ±
0 , respectively. Also we denote by x±

1 the points of intersection of the base Γ+
0 with

two surfaces ξ1(x) = ξ1(x0) ± 1

2
∆ξ1 , ξ2(x) = ξ2(x0)

respectively, and we denote by x±
2 the points of intersection of the base Γ+

0 with two surfaces ξ1(x) = ξ1(x0) ,

ξ2(x) = ξ20(x0)±
1

2
∆ξ2 respectively. The cross-section of the tube K by orthogonal with respect to the B plane

is close to parallelogram formed by the vectors
[g2 ,b ]

|g2 |
∆l1 and

[b ,g1 ]

|g1 |
∆l2 , where lengths ∆lk of the lateral

sides of the parallelogram are determined in terms of ∆ξk from the relations

∆ξ1 =

(
[∇ξ2 ,b ] ,∇ξ1

)
| ∇ξ2 |

∆l1 + o(∆ξ1) , ∆ξ2 =

(
[b ,∇ξ1 ] ,∇ξ2

)
| ∇ξ1 |

∆l2 + o(∆ξ2) , which give us that

∆l1 =
|g2 |
B

(
∆ξ1 + o(∆ξ1 )

)
, ∆l2 =

|g1 |
B

(
∆ξ2 + o(∆ξ2 )

)
. (21)

From here and (9) we derive the following equalities

J
+

∥ =
j∥(x0)

B(x0)

(
∆ξ1∆ξ2 + o(∆ξ1∆ξ2 )

)
, J

−
∥ = −

j∥(z(x0) )

B(z(x0) )

(
∆ξ1∆ξ2 + o(∆ξ1∆ξ2 )

)
, (22)

x+
1 − x−

1 =
[g2 ,b ]

|B |
(
∆ξ1 + o(∆ξ1 )

)
, x+

2 − x−
2 =

[b ,g1 ]

|B |
(
∆ξ2 + o(∆ξ2 )

)
. (23)

The currents J±
k are determined by the formulae

J±
1 =

x±
1∫

z(x±
1 )

(
j ,n±

1

)
∆l2 ds , J±

2 =

x±
2∫

z(x±
2 )

(
j ,n±

2

)
∆l1 ds , where n±

k = ± gk

|gk |
. (24)

Using (5), (6), (9) and (21), and standard relations among the vectors of covariant and contravariant basis

g1 =
√
g
[
g2,g3

]
, g2 =

√
g
[
g3,g1

]
, g3 =

√
g
[
g1,g2

]
, g1 =

[
g2,g3

]
√
g

, g2 =

[
g3,g1

]
√
g

, g3 =

[
g1,g2

]
√
g

,

we receive the equalities in the formulae (17) and the following formulae :(
j ,n±

1

)
∆l2 = ∓ f2

(
∆ξ1 + o(∆ξ1 )

)
,

(
j ,n±

2

)
∆l1 = ± f1

(
∆ξ2 + o(∆ξ2 )

)
. (25)

Substitution (25) to the (24) gives us the equalities :

J±
1 = ∓W2(x

±
1 )

(
∆ξ2 + o(∆ξ2 )

)
, J±

2 = ±W1(x
±
2 )

(
∆ξ1 + o(∆ξ1 )

)
, (26)

where the functions Wk(x) are defined by the formulae (16), (17). Then from (26) and (23), we receive the following
equalities:

J+
i + J−

i = −
(
b(x0) , [∇Wk(x0) ,g

k(x0) ]
)

B(x0)

(
∆ξ1∆ξ2 + o(∆ξ1∆ξ2 )

)
, k ̸= i , i, k = 1, 2 . (27)

From the divergence theorem and the equation (8), it follows that the full current J flowing out from the flux tube

K equals zero: J = J
+

∥ + J
−
∥ + J+

1 + J−
1 + J+

2 + J−
2 = 0 . Substituting formulae (22), (27) into this identity and

making passage to the limit for ∆ξ1, ∆ξ2 → 0 in the identity
J

∆ξ1∆ξ2
≡ 0 we receive the formulae (15)–(17).
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