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Introduction 

The way of magnetohydrodynamic (MHD) waves of solar-wind origin is not easy. In order to penetrate into the 
magnetosphere, they have to cope with two serious obstacles. These are the earth’s bow shock and the magnetopause. 
The transmission of MHD waves through the bow shock has been studied rather thoroughly. As an example we can 
point out McKenzie and Westphal [1970]. Reflection, transmission and generation of MHD waves at the magnetopause 
for a closed magnetosphere has been investigated by Wolfe and Kaufmann [1975] et al.. The open magnetopause with a 
nonzero normal component of magnetic field is assumed to be a rotational discontinuity. Under an isotropic pressure, 
the magnetic fields on either side of it are known to have the same magnitude and subtend equal angles ψ with the 
normal, but can rotate at an arbitrary angle ∆А in the azimuthal direction. Fluid flow across the boundary is at the speed 
of the normal component of the Alfven velocity. Most noteworthy of all is the existence of a coordinate system, the so-
called de Hoffman frame, in which fluid flow will be along the magnetic field and at the local Alfven speed VA. The 
thermal pressure P, the fluid density ρ and other thermodynamic quantities are continuous across the discontinuity. We 
only know two theoretical papers, where transmission of MHD waves through such a discontinuity is considered. Lee 
[1982] has studied the transmission of Alfvén waves for a rotational discontinuity in which the magnetic field rotates 
by ∆А=180° across the boundary. However, the assumption that the discontinuity is flat like that extremely restricted 
the application domain of the results obtained. Kwok and Lee [1984] have studied the transmission of any of the 
incident waves at a rotational discontinuity of an arbitrary magnetic field configuration. However, correctness of the 
results obtained in the last paper (for example, existence of the very high amplification regions and nonzero amplitude 
of an emanating entropy wave for the case of an incident non-entropy wave) is doubtful. We performed more accurate 
consideration and got different results, which seem to be more correct. Our problem formulation is virtually the same 
as that used by Kwok and Lee. There is one distinction only: all possible incident angles of MHD waves are included 
into our consideration as well as those with which the refracted fast magnetosonic wave turns into the inhomogeneous 
surface wave. Because of bulk limitations we only consider here the transmission of fast magnetosonic waves through 
arbitrary rotational discontinuity. 
 
Method of approach 

The small-amplitude waves transmission problem is solved, as a rule, using the perturbation theory methods. As 
far as we know, in the MHD method was first applied by Kontorovich [1958]. The general strategy can be summarized 
as follows. 

MHD equations determine the properties of MHD waves on the two sides of the rotational discontinuity. The 
familiar one-fluid MHD equations with an isotropic plasma pressure are used to describe the otherwise uniformly 
magnetized, homogeneous medium. Equations may be written as 
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The conservation laws of mass flux, momentum flux, energy flux, tangential electric field and normal magnetic 
flux determine all properties of the unperturbed rotational discontinuity. 

The first order perturbations of the conservation laws give the relationship between perturbed quantities on the two 
sides of the discontinuity. Kontorovich [1958] has found that the eight conservation laws can be reduced to only seven 
equations. The eighth equation is linear combination of the seven equations. In the case of rotational discontinuity, the 
relations are as follows: 

21 pp δ=δ  (1a) 

21 δρ=δρ  (1b) 
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where Av
r
δ  is perturbation of the Alfven velocity. The subscripts 1 and 2 relate to upstream and the downstream region, 

respectively. The interaction of the incident wave with MHD discontinuity perturbs the discontinuity surface. Equation 
(1e) allows to determine the velocity survδ  of small displacements of the surface by the perturbed quantities in the 
upstream region. 

In the rotational discontinuity, there can be six eigenwaves emanating from the boundary. They are the fast 
magnetosonic wave in the upstream region, fast magnetosonic wave, slow magnetosonic wave, convected slow 
magnetosonic wave, Alfven wave and the entropy wave in the downstream region. The convected wave is the wave 
which propagates upstream in the fluid’s rest frame. Convection of a slow magnetosonic wave makes it a downstream 
propagating one in the de Hoffmann frame. The amplitude of perturbed shock speed is the seventh unknown. The 
equation (1e) determines this amplitude. The perturbed quantities on each side of discontinuity presented in the 
equation (1a-d) are expressed in terms of amplitude and wave vector of the incident one and the six emanating waves. 
The perturbations of pressure and density are known to be associated with magnetosonic waves. With entropy wave are 
associated the perturbations of density, but not of pressure. The perturbations of pressure and density are continuous 
across the shock surface (the equations (1a) and (1b)). This immediately infers that the emanated entropy wave appears 
only in the case of the incident entropy wave. In this paper we deal with the case of an incident fast magnetosonic 
wave. In the case the downstream modes consist of all the modes mentioned above except the entropy wave. We note 
that this mandatory condition was not observed in the paper by Kwok and Lee [1984]. This is well enough to conclude 
that there is a mistake in their paper. Allowing for the absence of the emanating entropy wave, we obtain a 5×5 system 
of linear inhomogeneous equations (1a,c,d) in the five unknowns, where these five unknowns are associated with the 
two fast magnetosonic waves, the two slow magnetosonic waves and the Alfven wave. However, we do not know so 
far the propagation angles of the diverging waves. 

The frequency ω in the de Hoffmann frame and the component of the k
r

 wave vector tangent to the shock surface 
remain continuous across this surface when MHD waves are transmitted through the shock. Let the y-z plane of an (x, 
y, z) coordinate system form the discontinuity interface, while the shock normal is collinear with the x direction. The 
wave vector of incident wave, k

r
, lies in the x-y plane. The continuity of the above two quantities ω and k

r
 may be 

rearranged as the continuity of the tangential phase velocity 
у

p k
c ω

≡ . This condition is derived out of the assumption 

of small amplitude of the incident wave only. It has nothing to do neither with boundary conditions nor with a MHD 
equations system used. For the Alfven wave, the refraction angle is determined by 
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Always, the emanating Alfven wave is the homogeneous harmonic linear polarized plane wave. There are two methods 
which might be employed for determination of propagation angles of the emanating magnetosonic waves. Kontorovich 
[1958] presented a geometrical method for construction of diverging waves. Another method is the obtaining of the 
Snell’s law for this problem (Kwok and Lee [1984]). However, the use of these methods meets some difficulties. We 
propose our solution of this problem. The magnetosonic mode may be rendered in the form 

( )tiykixff y ⋅ω⋅−⋅⋅+⋅χ⋅δ=δ exp , where χ can be complex. Here, δf is the wave amplitude of a certain physical 
quantity associated with the wave motion. The linearized MHD equations to describe this perturbations associated with 

magnetosonic modes may be solved for 
yki ⋅

χ
≡ϕ . We obtain the fourth–degree polynomial, which may be written as 
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where cs is the sound velocity. This equation describes the magnetosonic waves in the medium separated by the 
discontinuity with nonzero mass flux across surface. The discontinuities are the fast shock wave, the slow shock wave 
and the rotational discontinuity. Coefficients A0, B0, C0, D0 and E0 depend on the tangential phase velocity (or the 
incident angle) and unperturbed quantities on the one side of discontinuity. For wave from upstream (downstream), we 
must employ the unperturbed quantities with subscript 1 (2). For physically corrected situations, this equation has 
either four real solutions or two real solutions and two conjugate complex solutions. Real solution describes the 
familiar homogeneous harmonic linear polarized plane magnetosonic wave. One of complex solutions describes the 
inhomogeneous plane surface wave. On side 1, it is solution with Reχ>0. On side 2, it is solution with Reχ<0. The 
wave amplitude of a physical quantity, associated with the inhomogeneous wave, subsides with distance from of the 
shock (approximatelly 3 times at a wave-length).  

Solving the equation (2b) on the two sides of the discontinuity one can find reflected angle of convected fast 
magnetosonic wave from upstream and angles of propagation of three emanating magnetosonic wave from downstream 
region. Equations (2a) and (2b) give the propagation angles of all emanating waves as a function of the incident angle 
of an incoming wave. In case of incoming fast magnetosonic wave only refracted fast magnetosonic mode may be 
inhomogeneous surface wave. The perturbations associated with this surface wave may be written into the form: 
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For real ϕ, expressions (3) determine, as expected, the famliar linear polarized wave. For complex ϕ, we have elliptical 
polarized perturbations of Alfven velocity and flow velocity associated with the inhomogeneous surface wave. In the 
common case, perturbations Av

r
δ  and v

r
δ  lying in the different plane of polarization. 

Now we know all the necessary properties of diverging waves including the propagation angles and the 
polarization. By using (2) and (3), the system of relations (1) may be solution to obtain the amplitude coefficients all 
emanating waves and the perturbation of the shock surface. However, such a solution involves tedious algebra, and we 
should limit ourselves to numerical calculations. The analytical solution may be obtained only in certain special cases. 
We obtain these solutions for two cases. First, we consider incident wave propagation parallel to the discontinuity 
normal. Second, we suppose β<<1, where β is the thermal pressure to the magnetic pressure ratio. This analytical 
solutions are used for the verification of our numerical results. Because of bulk limitations these solutions aren’t 
presented here. 
 
Numerical results 

The amplitudes of the emanating waves depend on the elevation angle ψ of the magnetic fields, on the azimuthal 
angle A1 between wavevector of incident wave and magnetic field in upstream region, on azimuthal angle ∆A between 
magnetic fields on the two sides of the discontinuity, on polytropic index γ, on defined earlier β. To obtain numerical 
and analytical solutions presented here, the parameters used are ψ=60°, A1=30°, ∆А=45°, γ=5/3, β=1.5. The 
propagation angle λ for the waves is angle between wavevector and the x-axis. We consider the cases of incident fast 
magnetosonic waves with upstream and downstream regions. In the last case, the incident wave is a convected fast 
magnetosonic wave. 

When the wavevector of incident mode is perpendicular to shock surface, the analytical solution gives the 
following normalized amplitude coefficients (the ratio of perturbations of the velocity associated with emanating and 
incident wave): 

210v  080vv  980v  020v a2SS2f1f .;.;.;. =δ−=δ=δ=δ−=δ −+  - in case with an incident fast magnetosonic wave in the 
upstream region. 

050v  020vv  000v  001v a2SS2f1f .;.;.;. =δ=δ=δ=δ=δ −+  - - in case with an incident convected fast magnetosonic 
wave in the downstream region. 

It has been shown that the coefficient for transmitted fast wave is about one. The interaction of an incident wave 
with the shock surface gives rise to four new emanating waves, but their amplitudes are small. 

Figure 1 shows variations of the propagation angles ((1A) and (1B)) and the normalized velocity perturbations 
((1C) and (1D)) of all divergent waves as a function of incident angles of the fast magnetosonic waves. Figure (1A) and 
(1C) shows the case of incident fast magnetosonic wave from the upstream region; to be contrasted with figures (1B) 
and (1D), which show the case of incident convected fast wave from the downstream region. The normalized 
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coefficients for the refracted fast magnetosonic wave (denoted by f1 or f2), the reflected fast wave (denoted by f2 or f1), 
the emanating Alfven wave (denoted by A), the slow magnetosonic wave (denoted by S+), the convected slow wave 
(denoted by S-) are plotted. The shock speed is labeled with Sur. In the case of normal incident angle, the result of the 
analytical solution is labeled with asterisks. In the case of small incident angles, the transmission coefficient of the fast 
wave is around 1, and the amplitudes of other emanating waves are small (around zero). For large incident angles the 
absolute value of the reflected coefficient tends to 1, and the amplitudes of other modes tend to 0. It is a total internal 
reflection. The group velocity of the incident and reflected waves directs parallel to the shock surface. In the case of 
large incident angle (λin<145°) of convected fast wave (for chosen quantity β, γ, A1, ∆A and ψ), the refracted fast wave 
transforms into the inhomogeneous surface wave. For surface wave, Figure 1 is a plot of the absolute value of the 
complex amplitude coefficients according to sign of the phase. 
 
Summary 

In general, a small-amplitude fast magnetosonic wave incident on a rotational discontinuity has proved to give rise 
to reflected and refracted fast waves, as well as to all theoretically possible emanating modes except the entropy wave. 
Usually transmission coefficients of emanating waves are small. For small incident angles, the normalized amplitude of 
refracted wave is around 1. It has been found that maximal amplitude of the refracted wave differs only by the factor 1.5 
in comparison with that of the incident waves. In case of a large incident angle of the fast wave, the refracted fast wave 
turns into the surface wave, which subsides with the distance from the shock.  

In contrast to the result of Kwok and Lee [1984], it has been found that perturbations behind the front lead to a 
small amplification. Therefore for the perturbation of solar-wind origin, the rotational discontinuity is not a considerable 
barrier. 
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