Some features in the energetic electron precipitation pattern near the plasmapause in the evening sector
T.A.Yahnina, E.E.Titova, A.G.Yahnin, B.B.Gvozdevsky, A.A.Lyubchich (Polar Geophysical Institute, Apatity, Russia)
V.Yu.Trakhtengerts, A.G.Demekhov (Institute of the Applied Physics, Nizhny Novgorod, Russia)
J.L.Horwitz (The University of Alabama, Huntsville, Alabama, U.S.A.)
The low-altitude NOAA satellites sometimes observed sharp, step-like enhancements in the trapped flux of energetic (E> 30 keV) electrons at L=3-5. In such events the flux increased for 150-300% when the latitude increased only for 0.1-0.3 degree. Closely to these features the localized bursts of precipitating energetic electrons were also observed. Relationship between the trapped and precipitating flux in such events, dependence of their occurrence on MLT, and particle flux dynamics during magnetic disturbances were considered. It was found, particularly, that in 80 percents of such events the step-like gradients in trapped (at the altitude 850 km) population and bursts of precipitation were observed in the evening sector. The events occurred mainly during the magnetic storm recovery phase. Nearly simultaneous data obtained from the NOAA and Aureol-3 satellites demonstrated the close relationship between these particle features and enhanced level of the ELF waves in the frequency range 100-1000 Hz. Comparison with the DE-1 satellite measurements of the low energetic (E<50 eV) ions showed the coincidence of the energetic electron precipitation features with the cold plasma gradients. These experimental results could be explained by the cyclotron instability developing in the vicinity of the plasmaspheric bulge or in the vicinity of some cold plasma gradients generated in the inner magnetosphere in the course of the magnetic storm.
Cyclotron model for quasi-stationary precipitations of energetic electrons at the plasmapause
V.Yu.Trakhtengerts*, A.A.Lyubchich**, A.G.Demekhov*, E.E.Titova**, M.J.Rycroft***
* Institute of Applied Physics, Nizhny Novgorod, Russia
** Polar Geophysical Institute, Apatity, Russia
*** International Space University, Strasbourg, France
Formation of a precipitation zone of energetic electrons by their injection into a region of enhanced background plasma density during magnetic storms is analyzed. Such a region can be formed by a plasmasphere bulge or detached cold plasma clouds appearing in the outer magnetosphere by the plasmasphere restructuring during a magnetic storm. As a mechanism of precipitations, wave-particle interactions by the cyclotron instability are considered. In framework of self-consistent equations of the quasi-linear plasma theory, the distribution function of trapped particles and spectral energy density of waves are found. Preliminary comparison of the theory with experimental data from NOAA satellites is made.
Вариации частотного состава Pc3-4 и Pi2 пульсаций вдоль геомагнитного меридиана
Ягова Н.В. (Объединенный институт физики Земли РАН, Москва)
Анализ данных наблюдений Pc3-4 пульсаций на меридиональной сети станций, развернутых на Дальнем Востоке, показал сложную частотно-пространственную структуру колебаний на средних широтах. Количественную интерпретацию широтных вариаций спектрального состава удается дать, исходя из представлений о том, что источник пульсаций имеет конечную частотную полосу, внутри которой спектр искажается локальными магнитосферными резонансами. Для выявления резонансных частот была предложена модификация градиентного метода, опирающаяся на данные сопряженных пар станций. По наземным данным восстановлен радиальный профиль плотности плазмы в плазмосфере, дополнивший данные эмпирических моделей. Выявлены некоторые новые особенности поведения резонансной и нерезонансной компонент магнитного поля волны на средних широтах. Для отдельных серий Pc3 и Pi2 пульсаций обнаружены резкие изменения амплитудных, частотных и фазовых характеристик при сравнительно небольших изменениях геомагнитной долготы, дающие новый материал для исследования механизмов и скоростей распространения МГД волны в магнитосфере и ионосфере.
Frequency-doppler shift variations of the vertical-incidence sounding radio signal during geomagnetic pulsation observations
B.O.Vugmeister, R.A.Rakhmatulin, L.A.Leonovich, Yu.V.Lipko and I.V.Tabanakov (Institute of Solar-Terrestrial Physics SD RAS, Irkutsk 664033, P.O. Box 4026, Russia)
In February 1995, at station Norilsk (
j = 64.2; l = 160.4 ) an experiment on simultaneous recording of geomagnetic pulsations and frequency Doppler shift (FDS) of the ionosphere-reflected radio signal was carried out. The measurements were made using the vertical-incidence ionosphric sounding hardware-software facility. The facility measures, at fixed frequency, Doppler characteristics (frequency shift, spectrum structure) of the reflected radio signal, as well as radio signal angles of arrival by a phase-difference technique (reception at three spaced antennas). The experiment employed operating frequencies in the range 2.0-4.0 MHz; the reflected signal from the Es- and F2-layers was received.Geomagnetic pulsations were recorded by an induction magnetometer in three frequency ranges: 5-0.2; 0.2 - 0.01; and 0.01 - 0.005 Hz. It was found that the appearance of irregular geomagnetic Pi2 pulsations and regular pulsations with periods of 60-150 s is accompanied by concurrent changes in the FDS signal envelope. At the time of the Pi2 pulsation observations the height of the ionization layer was 120 km, and in the case of regular pulsations it was 200 km. The detected distinctive features are discussed in terms of the evolution of irregularities in the auroal zone field-aligned currents during magnetospheric disturbances.
On the frequency modulation of VLF emissions
M.Goncharova and W.Lyatsky (Polar Geophysical Institute, Apatity 184200 Russia)
The efficiency of the VLF wave frequency modulation by a magnetosonic low frequency wave as a function of magnetosphere plasma parameters is studied. Weak pitch angle diffusion of electrons into the loss cone is assumed. It is shown that in the quiet magnetosphere the disturbance of the maximum intensity frequency would be of order of or higher than the relative magnetic field disturbance in the equatorial plane. The upper cutoff frequency modulation is also considered. The frequency modulation seen on the calculated theoretical sonagrams may be related to the "non-dispersive" and to the "inverted V" structures of QP hiss. Simple formula relating the maximum intensity frequency and the magnetosphere plasma parameters in the equatorial plane is obtained. The relationship between the frequency modulation in the equatorial plane and on the ground is also calculated.
Analytical research of Kelvin-Helmholtz instability for magnetosphere
M.G.Gudkov (Arctic and Antarctic Research Institute, St.Petersburg)
A development of the Kelvin-Helmholtz instability in the compressible plasma containing a magnetic field is studied for a finite thick layer with a velocity shear in a linear two-dimensional MHD approximation. It is shown the existence some modes of oscillations connected with the different resonant points. The speed of the main flow in these resonant points differs from phase speed of oscillation by certain quantities typical of plasma, such as Alfven speed, fast and slow magnetosonic speeds, cusp resonance speed.
For the velocity profile with the strongly expressed maximum of second derivative of the velocity, analytical expressions for the phase speed, growth rate and wavenumber of the fastest growing unstable mode have been obtained. These expressions have been applied with some necessary simplifications to regions of magnetisphere where sheared plasma flows are observed such as magnetopause, boundary between inner plasma sheet and plasmasphere.
Investigation of the longitudinal drift and precipitation of the energetic electrons during the substorm
A.A.Lyubchich, A.G.Yahnin, E.E.Titova (Polar Geophysical Institute, Apatity, Russia)
V.Yu.Trakhtengerts, A.G.Demekhov (Institute of the Applied Physics, Nizhny Novgorod, Russia)
R.D. Belian (Los Alamos National Laboratory, Los Alamos, NM, USA)
J.Manninen, T.Turunen (Sodankyla Geophysical Laboratory, Sodankyla, Finland)
R.Rasinkangas (Department of Physical Sciences, University of Oulu, Oulu, Finland)
The peculiarities of the drift of energetic electrons injected during the substorm occurred in the beginning of December 17, 1990 were considered on the basis of the measurements made onboard three geosynchronous LANL satellites and CRRES. It was shown that for this event a simple model of electron cloud drift in the dipole-like magnetic field is appropriate to describe the observed evolution of the flux intensity. Pitch-angle anisotropy of the particles was considered, and it was shown that the anisotropy is maximal in the early morning sector in comparison with the night and late morning sectors. Comparison of the observations with the modeling of the pitch-angle distribution allowed us to conclude that in the morning sector the isotropization of the pitch-angle distribution as well as the precipitation of the electrons into the ionosphere probably occurred. Simultaneously, the impulsive electron precipitation and the VLF emissions were observed in the morning sector by the EISCAT radar and the ground-based VLF receiver, respectively. These observations were interpreted as signatures of the cyclotron instability developing in the equatorial magnetosphere. The characteristics of the impulsive precipitation could be related to the oscillating regime of the instability and the evolution of the pitch-angle distribution of the drifting particles.
Modeling of nonstationary electron precipitations by the whistler cyclotron instability
A.G.Demekhov*, A.A.Lyubchich**, V.Yu.Trakhtengerts*, E.E.Titova**, A.G.Yahnin**
J.Manninen***, T.Turunen***
* Institute of Applied Physics, Nizhny Novgorod, Russia
** Polar Geophysical Institute, Apatity, Russia
*** Sodankyla Geophysical Observatory, Sodankyla, Finland
For comparison of theoretical results with experimental data, it is obviouly fruitful to employ simplified models which enable one quick obtaining of estimations and thus quick choosing of parameters providing the best agreement with the experiment. In this paper one of the models for a nonstationary regime of the whistler cyclotron instability is discussed. It is based on the so-called multi-level set of equations for the cyclotron maser (Bespalov, 1981), taking into account nonlinear modulation of the pitch-angle distribution of trapped particles. To get the model closer to the experiment, its generalized version with slow time dependence of the coefficients is considered. Such a dependence can be, e.g., due to variation of the number density, energy or anisotropy of energetic particles or background plasma density in the instability region. On the base of numerical calculations, we investigate the dependencies of characteristics of energetic electron precipitation pulsations on those parameters and their possible temporal evolution. An attempt is made to compare the results obtained with observational data.
The VLF wave modulation by Pc1/2 pulsations in the magnetosphere as a function of plasma parameters
M.Yu.Goncharova and W.Lyatsky (Polar Geophysical Institute, Apatity 184200 Russia)
Pc1-2 magnetic pulsations are usually considered to be Alfven waves that do not interact with VLF waves. However when a circularly polarized Alfven wave propagates in the dipole geomagnetic field along the flux tube the latter bends alternately into the area of weak and strong ambient magnetic field. As a result the VLF growth rate inside this flux tube would respond to the magnetic field compressions and decompressions. The efficiency of the Pc1/2 - VLF interaction is calculated as a function of the magnetosphere plasma parameters. It is shown that two main factors control the VLF wave intensity modulation by Pc1/2 pulsations: i) the compensation effect when integrating the VLF growth rate along the magnetic field line because of the short period of pulsations and ii) the combination of the electron pressure anisotropy A, and the squared ratio of the electron thermal velocity to the Alfven velocity B. It is found that for relatively quiet magnetosphere conditions at L=5, for A=0.5, B=1, Pc1-2 amplitude 5nT in the magnetosphere equatorial plane and the pulsation period of 7 s the expected VLF intensity variation would reach 1.5 times.
Pulsating aurora and VLF activity in the morning sector
V.R.Tagirov, V.S.Ismagilov, E.E.Titova and A.A.Perlikov (Polar Geophysical Institute, Apatity, Murmansk region)
V.A.Arinin (Russian Federal Nuclear Center, Sarov, Nizhny Novgorod region)
J.K. Manninen, T.Turunen (Geophysical Observatory, Sodankyla)
K.Kaila (Department of Physics, University of Oulu, Oulu)
Results of simultaneous TV observations of pulsating auroral patches and VLF-emissions in the morning sector carried out in Sodankyla (Finland) on February 15, 1991 are presented. Auroral pulsating activity was high during recovery phase of substorm and looked typical representing pulsating patches with characteristic periods about 5-10 s expanding and propagating during their brightening. Chorus elements in frequency range 1-2 kHz with typical periods of 0.3-0.4 s were the main VLF emissions at the same time. They appeared in trains with periodicity (5-10 s) the same as auroral one. Both auroral and VLF activity lasted up to the dawn demonstrating coexistence of both phenomena for about 2 hours. Two intervals (20 and 37 seconds) were chosen for detailed computer analysis of auroral images and VLF waves. Mutual correspondence between the flashing of the patches and appearence of VLF chorus trains was found out in both intervals. Most often chorus emissions coincide with the moments of maximum brightness of the patches. The spatial dimensions of pulsaing area were about 30 km luminosity propagated inside it with velocity about several km per second.
This study has been supported by the grant 95-05-14495 from the Russian Foundation for Fundamental Research and INTAS grant 2753 & 3120.
Statistical study of pulsating aurora and VLF-chorus
I.A.Kornilov (Polar Geophysical Institute, Apatity)
Three types of data analyzes have been used for the study of TV records with the fast auroral flashers and synchronously recorded VLF-chorus emissions (correspondingly 1350 and 1400 cases in total):
(1) 2-dimensional (2D) representation of FFT for auroral data and integrated in bandwidth 1300
± 8% Hz chorus. (2) 2D crosscorrelation study. (3) Statistical investigation of the gistogram type for study the distribution of the time intervals between individual bursts of aurora and VLF emissions.The results are: (1) 2D-FFT spectra shows the "energy exchange" between aurora and VLF - intensification of aurora acompighned by VLF chorus activity decreasing and vise versa. (2) 2D-crosscorrelation function revealed the tendency for the auroral bursts to lead the VLF for about 2 seconds. (3) Time intervals distribution shows the presences of some special picks on the aurora flashers distribution but not on the same for VLF-chorus.
Features of auroral ionosphere density and characteristics of propagating ELF waves
O.A.Maltseva (Institute of Physics, Rostov-on-Don)
E.E.Titova (Polar Geophysical Institute, Apatity)
In order to use results of emission observations for diagnostics of magnetospheric plasma it is necessary to interpret rightly experimental data. One problem of the interpretation of narrow-banded ELF emissions at low-altitude satellites is the question what characteristics of observed emissions are determined by source and what - by propagation of waves. One important characteristic is an angle
J between the wave vector and Bo. An initial angle J st is determined by a source localised at (hst,Lst)-point. A final angle J k in an observation point (hk, Lk) at satellite determined by the J st value and the plasma distribution. Experimental facts are as follows: 1) Lk Ј Lst, 2) J k are low. In this paper the dependencies J k(J st), Lk(J st) are studied in range -90O <J st <+90O for hst=3000-3500km, Lst=8-14 and models of the auroral ionosphere with different features of density. These features include an auroral cavity and irregularities of different scales from enhancements of density like blobs to individual ducts or sin-structures with limited boundary from below and above. Results of computer calculations of ELF propagation show that two regions of J st can be selected in "smooth" models (pure auroral models like Maeda's models as well as auroral model plus cavity): | J st| <80O and J st>80O. In the first region Lk>Lst and J k are low. In the second region Lk <Lst, but J k ~ 60-80O. For J st=89O quasiducted mode is realised with Vgrп п Bo, Lk ~ Lst, J k ~ J st. An inclusion of irregularities influences on J k-behaviour by different way in two selected regions of J st. In the first region the change of sign J k appears. In the second region there is a decrease of J k up to low values corresponding to experiment data. Dependencies Lk(J k) were changed a little. The best results were obtained for blobs. Detailed calculations allowed to obtain dependencies of J k(J st) on horizontal and vertical sizes of blobs as well as on the relative position of Lst and Lbl. These results can be used for a statement of a possible presence of structures having more small scale than auroral cavity.
КНЧ излучение ночной зимней ионосферы по данным среднеширотных наземных наблюдений
Ю.Б.Башкуев, Д.Г.Буянова, В.Б.Хаптанов (Бурятский институт естественных наук СО РАН, г.Улан-Удэ)
Во время зимних наблюдений обнаружено изменение уровня и формы спектрального распределения КНЧ-шума в ночные часы в диапазоне 100-500 Гц. Изменение формы спектра начинается после захода Солнца и заканчивается во время его восхода. Эффект отмечен по трем измеряемым горизонтальным компонентам: Еc-ю, Ез-в, Нз-в. В летних ночных спектрах интенсивность КНЧ-шума в диапазоне 100-500 Гц остается примерно постоянной. Основные особенности эффекта: по компонентам Ес-ю, Нз-в в ночные часы происходит уменьшение уровня низкочастотных (ниже 100 Гц) составляющих и увеличение высокочастотных составляющих (100-450 Гц) спектра; увеличение интенсивности с максимумом на частотах 200-400 Гц достигает 7-8 раз относительно минимума поля, наблюдаемого в полуденное время на тех же частотах; наиболее сильно эффект проявляется по компонентам Ес-ю, Нз-в и в меньшей мере по компоненте Ез-в. Обнаруженное изменение формы спектров в ночное время зимой может быть вызвано как источниками поля, так и изменением условий распространения волн в дневное и ночное время. По нашему мнению, источники КНЧ-шума, вызывающие данный эффект, расположены вне полости "Земля-ионосфера". Излучение принимается на земной поверхности за счет просачивания через ионосферу, которая наиболее прозрачна для КНЧ волн ночью. Коэффициент прохождения W максимален при распространении проникающей волны в меридиональной плоскости, примерно вдоль геомагнитного поля. Возможен механизм проникновения ионосферных КНЧ излучений на земную поверхность через область главного среднеширотного ионосферного провала (ГИП), который наблюдается преимущественно в зимнее ночное время (19-05 LT). Широкополосное увеличение уровня КНЧ-шума существует в течение 10-12 часов в ночное время и не связано с градиентно-дрейфовой неустойчивостью, возникающей при переходе ионосферы от дневного к ночному состоянию вследствие движения линии терминатора, которое обнаружено в субавроральных широтах. Тупой пик в спектре определяется одновременно двумя факторами: резонансными явлениями (поглощение и отражение) между Землей и границами раздела в ионосфере; частотными характеристиками затухания нормальных волн в волноводе "Земля-ионосфера".
Волновые аспекты авроральных возмущений
В.А.Пилипенко, Е.Н.Федоров, Н.В.Ягова (Институт физики Земли РАН, Москва)
Получены некоторые новые результаты, полученные как при экспериментальных исследованиях, так и при теоретическом анализе, касающиеся следующих аспектов волнового переноса энергии авроральных возмущений на средние и низкие широты:
- вариации спектрального состава Pc3 пульсаций вдоль меридионального профиля от субавроральных до приэкваториальных широт;
- физическая природа предварительного импульса SS
C;- особенности меридионального распространения Pi2 сигналов;
- азимутальное распространение Pc5 пульсаций в утреннем и вечернем секторах магнитосферы.
Геомагнитные пульсации Рс1 и параметры солнечного ветра
А.В.Соболев (Институт космофизических исследований и аэрономии, Якутск)
Рассмотрена связь пульсаций Рс1 в Якутске, Иркутске и в Тикси со скоростью, плотностью солнечного ветра (с.в.), напряженностью ММП, величиной и знаком B
z и ориентацией вектора ММП. Обнаружено, что появление пульсаций Рс1 с периодом =2 c (наиболее распространенные) зависит только от плотности протонов с.в. Эта связь позволяет обьяснить такие свойства пульсаций как обратную зависимость числа появления Рс1 от солнечной активности, 27-дневную повторяемость Рс1, повышенную встречаемость Рс1 при смене знака сектора ММП, перед, после геомагнитной бури и во время SSC, отсутствие связи продолжительности Рс1 с S Kp за сутки (перечисленные свойства хорошо подтверждаются свойствами протонов с.в.).
На основе связи Рс1 и протонов объясняется и смещение максимума в суточном ходе числа появления Рс1 с дневных часов на высоких широтах к утренним на низких (протоны при диффузии от дневной магнитопаузы вглубь магнитосферы смещаются на утреннюю сторону). Сделан вывод, что основной причиной появления Рс1 являются проникшие в магнитосферу протоны солнечного ветра.
Evolution of the FMS waves in magnetosphere-ionosphere plasma with variable dispersion
V.Yu.Belashov (ISIP, FE Division of RAS, Magadan)
In this paper we study the evolution of the fast magneto-sonic (FMS) wave in magnetized plasma describing by the KdV equation for function h=B~/B when the dispersion parameter b is a function of varying Alfven velocity V=f[B(t,x),n(t,x)] and an angle between the wave vector and magnetic field (the cases of inhomogeneous and/or nonstationary plasma and magnetic field). The solutions of the KdV equation for b=const are well known and divide into two classes in dependence on value of b: for abs(b)<h(0,x)
l /12 (l is a characteristic initial wave length) the Kdv equation has soliton solutions, and in opposite case - the nonsoliton ones with asymptotics proportional to the Airy function's derivation [1]. These solutions can be obtained by IST method. However, for any varying functions b(t,x) that approach is impossible in principle, and it is necessary to use numerical simulation in this case.To solve the initial problem for the KdV equation with variable dispersion we used an implicit difference scheme with the high order approximation. Initial condition was chosen in the solitary pulse form, and a few types of model function b were considered, namely:
1) b=ax+c, 2) b=a exp(-cx2), 3) b=a cos(cx),
4) b=b0=const for x<=c and b=b0+a for x>c,
where a,c are constant for b=b(x) (stationary case), and a=0, 0<t<T; a(t), t
і T; c=const for b=b(t,x) (nonstationary case). Numerical simulation enabled us to obtain the various types of both stable and unstable solutions including "mixed" soliton-nonsoliton ones for different character of the dispersion changing, and to consider in detail the FMS wave dynamics for different model types and configurations of plasma and magnetic field including applications related to the "switching" plasma and field sources.Reference
[1] V.I. Karpman, Nonlinear waves in dispersive media, Nauka, Moscow, 1974
Связь иррегулярных пульсаций Pi2 с напряженностью межпланетного магнитного поля
А.В.Соболев (Институт космофизических исследований и аэрономии, Якутск)
По данным Якутска (L
~ 3) показана хорошая зависимость периода Pi2 от напряженности ММП. Сделан вывод, что волны Pi2 могут генерироваться вне магнитосферы, проникать в магнитосферу и при параметрическом усилении воздействовать как периодическая сила на магнитосферные резонаторы.
The problem of evolution and stability of 3d Alfven waves propagating in the magnetosphere-ionosphere plasma along the magnetic field
V.Yu.Belashov (ISIP, FE Division of RAS, Magadan)
In this paper we study the dynamics of the 3d finite-amplitude Alfven waves propagating in magnetized plasma with b=4
p nT/B2 which is described by the 3d derivative nonlinear Schrodinger equation (3-DNLS) [1] for function h=(By +iBz )/2B abs(1-b)1/2, where sign of nonlinearity is a function sgn(1-b), sign of dispersive term is defined by value of dispersive coefficient l=-1,+1 and corresponds to left and right circularly polarized waves, respectively.To study the stability of solutions we have rewritten the 3-DNLS equation in the Hamiltonian form with Hamiltonian H and investigated the H bounding with deformations concerving momentum P when variation of (H+vP), where v has a sence of Lagrange's factor, is equal to 0. At this, we have found that the 3d solutions of 3-DNLS may be stable when the signs of nonlinearuty and l are the same and the values of the diffraction coefficient belong to some set. From physical point of view it means that the waves having a right circularly polarization and positive nonlinearity, and the waves with left circularly polarization and negative nonlinearity may be stable or unstable in dependence on value of term describing diffraction.
To study the dynamics of 3d nonlinear waves the 3-DNLS equation was being integrated numerically using the codes developed specially with the initial conditions in form of solitary pulses under conditions of both total absorption at boundaries and periodic boundary conditions in x and transverse directions. As a result, we have investigated the structure and evolution of 3d waves in detail and obtained that the 3-DNLS equation may actually have the 3d stable Alfven soliton solutions, and 3d collapsing and spreading ones. That means that in terms of boundary problem describing propagation of the Alfven wave beam bounded in the transverse plane along the x-axis, the stationary beam formation, beam scattering and the beam self-focusing phenomenon with propagation in plasma with b>0 to magnetic field B at angles near 0 may be observed like the fast magneto-sonic waves' beam propagating across magnetic field B for b << 1 [2].
References
[1] V.Yu.Belashov, URSI and STEP/GAPS Workshop on Theory and Observ. Nonlin. Proc., Warsaw, Poland, 1995, p. 5.2
[2] V.Yu.Belashov, Pl. Phys. and Contr. Fusion, 1994, 36, pp. 1661-1669